31st July "Exploring spaces through movement" added inspiration.

This has made me rethink my idea of "Exploring spaces through movement" noted as an idea for ADF cohort 14.

I enjoyed the tactile connection with the prints in the exhibition. It would be nice to explore a space through some sort of tactile object. Moving around the object would expose more areas of the image. Having multiple objects, rather than just one, showing different sections of the same image/scene. Would be interesting as a user has to do a little effort in order to explore and to include within their parameters of the number of objects and the "site" of the image/scene.

"Leaf through images" in part of traced like etching of Reykjavik museumglyptograph

"Leaf through images" is part of traced like etching of Reykjavik museumglyptograph

"Leaf through images" is part of traced like etching of Reykjavik museumglyptograph

Showed printed images scattered on a surface like a table. You have to leaf through the prints to find others. You explore them and recreate them creating a new discovery.

"The physical re-orientation creates a connection with the pieces discovering what they are."

Made limited to the surface of XX X XX

Digital image site becoming physical space.
Need to have image, ideally video that is far larger than any of the individual objects. This will be the physical surface size 1080p / 4k image as the surface include object displaying image section maybe 320 x 216 as it shrinks to 1080 by 540. Allows for 36 objects but would like in 6x6 to maybe around half or 767, more than here to be more or an own are Scarlett.

17mm view

Surface image may be made up of multiple focal lengths to show or the objects show a more tighter or wider viewpoint. Giving a decision on how the scene is viewed.

- Eventually custom hardware would be required for the project.

LED of the size of the scene required.

Accelerometer required to sense how the object is being move then displaying different parts of the scene surface image.

Some sort of processor that runs the program containing the large surface image and then only displaying the side required for the object.

Need to work on a way that they will all be calibrated to work within the physical surface. So they show the right section in the right space they need to be object.
First need to look at writing program that can be run on an iPhone as a prototype of the idea. Then over software side is decided custom hardware can be developed and make object would be able to work together.

The object wooden from LED above Connor to accelerometer and CPU.

2 Dec 2015
Summary "Exploring space through movement"

Exploring space through movement is a piece that presents what you see through the use of a few scenes. Each showing a section of the same space. Here the viewer is able to re-orientate scene creating new combination like the found compositions.

- tactile movement of scenes attaching what is seen
- physical re-orientation
- new combinations/compositions
Here for my minimum viable piece I will have 1 or 2 displays/objects. This will have a very simple look to it but then being able to move the display object will add complexity in the otherwise simple/unusual presentation.

If I was to record multiple view points in the video I could merge this into a video so moving the object also changes the focal length (more zoom in).
Exploring space vs program

Display device
X, y positions will cause the display to appear at different areas of the larger image.

Get Matrix, get orientation & orientation

Change in translation from accelerometer is mapped to x, y values. Limits movement to size of tablet, spans the other devices as part in.

Frame New Way of proceeding \[\frac{1}{2} \]

Wires
Display can move up and down

Combine tablets + mirrors/glass

Inductively move fires
22 January

Mention that start this week could be behind the piece. Mentions chairs piece that were rearranged. Which was delayed so rearrangement shows up later. This would introduce the idea of objects being a scheme points to help a viewer's exploration. Do not just people in the exhibition achieve the relaxation subjects.
- hole
- glue
- Kindly fines holder.

- back
- bull and socket
Development

Created modified 3D parts for attachment for tablets. These need to be printed for testing. This will stick to the back of the Kindle case. The other side needs to attach to wire so can move up and down.

For the fake tablets can look at getting glass replacements for Kindles for about £7. Here could line the enclosure with black so glass reflects. Even with tin foil to act as a mirror. There could also be movement up/down.

Need steel wire grips to grip on to wire as well as attachment but still allow movement up and down.

Wire grippers here.

Screws into back of attachment friction to friction to prevent holes from being dragged.

Can rotate still as cylinder in attachment can rotate independently.

Actual Programming for Tablets.

Program will access rear camera of tablets. Moving up/down naturally sees above/bellow original view. Rotating view will slightly change going from portrait to landscape.

Wider view.

Accelerometer will come in use when tablets are rotated. Some times rotate how you would expect. In other occassions results in upside down image.

Also tablets will take photos/short video and play that back at different times.
This behavior can be set if tablet is in movie for awhile. When it does, regains normal controls.

Feb 22nd

Programming for tablets. (orientation)

Looking for solution to change position of the image/video displayed based on the orientation of tablet. Maybe best to keep the anchor of window fixed to allow rotation only to affect the image/video displayed.

- Get orientation()

- Keep orientation at window from android Market xml file.

Finding the rotation from using Pitch and roll data... Can store this in a Vector. So Vector of 2 values.

Rotating image from this Vector Value.

Feb 24th (Rotkinov)

Been working with rotating image from subs code Theo gave me.

floor angle = atan(Map(accel.y, 1, -1, 90, 90))

(set anchor point) // for immovable center of Translate (width/2, height/2);

(set rotate angle)

Low pass filter // for reducing fluctuations in angles.

float currentAngle = 0;
float destAngle = 45;

currentAngle += (destAngle - currentAngle) * 0.5

Rotating now working correctly.
Need to get camera working with tablet.
Starting build on frame.
Modification of catches required to allow for screws.
3/03/16

Still trying to get camera working with table.
Theo has said that he does not think I can
goto the robot from current value.
Need to be at using matrix from accounts.

Currently: see \[\text{getMatrix}() \]

\[
\begin{array}{ccc}
0 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{ccc}
\square & \square & \square \\
\end{array}
\]

\[
\begin{array}{c}
1 \\
\end{array}
\]

\[
\begin{array}{cccc}
-1 & 0 & 1 \\
\end{array}
\]
"Master class" - Feedback session 4 March

Mentioned Rybczynski: Some one to look at in regard to how do things happen in some place.

Monday 7 March Cam they

Using 1P can make it be more rotation.
Can use this with open framework to stream video back to tablets. Then the accurate data can just be used to see models so therefore change behavior of tables.

Length from 1.5m
1.5m x 1.5m seen good size.
Frame building

3 large pine boards:

- 2.98 m (144)
- 212 cm (144)
- 166.5 cm (144)

Frame square

- 1.5 m
- 1.5 m
11.4 x 3 = 34.2

Enlarging frame to same aspect ratio as tablet.

209 cm

L brackets. Width can exceed 48 mm.

Screws should not exceed 24 mm.

L from 125 cm

Scale 1:2

2.4 cm depth of wood.

125 - 2.4 - 2.4 = 120.2 cm
Table Programming

Using touch down to change axes with next camera function.

May look to using osc/s Carm in one to change the video instead.

Could use Carm vol to change next Carm or send osc message to arm table to switch video.

These ranges could be used to define different behaviors.