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1 Introduction

Music is a pattern of sounds in time. A swarm is a dynamic pattern of individu-
als in space. The structure of a musical composition is shaped in advance of the
performance, but the organisation of a swarm is emergent, without pre-planning.
What use, therefore, might swarms have in music?

This chapter considers this question with a particular emphasis on swarms
as performers, rather than composers. In Swarm Music, human improvisers
interact with a music system that can listen, respond and generate new mu-
sical material. The novelty arises from the patterning of an arti�cial swarm.
Swarm Music is a prototype of an autonomous, silicon-based improviser that
could, without human intervention, participate on equal terms with the musical
activity of an improvising group.

Real-life swarms organise themselves into remarkable, beautiful spatio-temporal
structures in a process known as self-organisation. This organisation is thought
to arise from the instantaneous dynamics of the swarming creatures, and not by
any central leadership. Swarming animals communicate with each other over
long time scales through the modi�cation of the environment in a biological
process known as stigmergy. This enables cooperative behaviour such as the
construction of termite mounds, despite the absence of a termite architect. Dig-
ital swarms are the software equivalent of these remarkable biological systems.
A virtual swarm may be visualised, but at a more abstract level, the swarm
exists as a set of local rules, or interactions, between digital entities. These
rules follow the theoretical models of biological swarms.

At the heart of the answer to the question posed above is a connection be-
tween self-organisation and structural levels in music, a link that suggests many
possibilities for the design of creative systems. This chapter begins therefore
with an account of self-organisation and swarming, and develops the link to
structural levels in music in Section 3.

Synthetic swarms, by virtue of the unpredictability of their patterning are
ideally suited to improvisation, and the remainder of the chapter concentrates
on swarms as performing systems. The real-time interaction between people and
swarms is enabled with an analogue of stigmergy. A three component model
outlines the interactions we might have with a virtual swarm, and by exten-
sion with any evolutionary algorithm. An analysis component maps external
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musical information into objects in the environment of the swarm. A stigmer-
getic interaction between swarming individuals and these objects takes place.
The dynamic interactions within the swarm are described by the second com-
ponent, the swarming function. The interpretation of swarming patterns into
sounds is accomplished by the third component. Section 4 outlines the complete
framework.

Section 5 considers the instantiation of the interactive model in the Swarm
Music family of improvisers, and discusses the motivation for design. The follow-
ing section considers live aspects of Swarm Music and introduces the recordings
of Swarm Music on the accompanying cd. Other performance systems that use
a swarm algorithm are also summarised. Section 7 illustrates, by reference to
system development in Swarm Music, a general scheme for increasing autonomy
in music systems. The chapter ends with a look to the future of Swarming and
Music.

2 Swarm organisation

2.1 The science of emergence

Self-organisation (SO), the science of emergence, can, as yet, only allude to
the pre-conditions for the emergence of large scale forms from local in�uences.
Bonabeau et al (1999) propose that SO relies on multiple interactions between
component parts of a system, an ability to amplify �uctuations, and positive
and negative feedback between components. Positive feedback forms the basis
of morphogenesis, allowing reinforcement of new forms. Negative feedback sta-
bilises the system and prevents runaway. Random �uctuations play a crucial
role in SO, enabling the system to �nd novel situations, which are exploitable
through positive feedback.

The paradigmatic example of SO is the collective behaviour of social insects,
for example the organisation of army ants in vast foraging patterns (Burton and
Franks 1985). The raid patterns of army ants contains hundreds of thousands
of virtually blind individuals, a remarkable example of decentralised control
(Bonabeau 1999: 36). Recruitment to a food source through trail laying and
trail reinforcement is an example of positive feedback, with stability arising from
the limited numbers of foragers and the exhaustion of the food source. Random
�uctuations arise in foragers through error; the occasional wayward ant who
has lost a trail might �nd a new food source. Communication between ants,
although it can take place through direct contact, is also mediated indirectly
via the environment by the laying of pheromone trails. Individuals are able to
exploit this information network, for example by following a trail that leads to
a newly discovered food source. Although an individual can interact with its
own trail, SO usually requires a minimum density of individuals who are intent
on exploiting the network. The indirect and temporally adjusted environment
mediated interaction is termed stigmergy (Grassé 1959). In a sense, stigmergy
happens to humans all the time. A note left on the kitchen table is an indirect
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interaction between people, in�uencing our actions several hours later.
Swarms, �ocks, herds and shoals are familiar examples of the groupings of

social animals. The organisation of Atlantic Herring into very huge shoals up to
seventeen miles long, and with many millions of �sh is a stunning example (Shaw
1975). This is particularly remarkable because it is unlikely that an individual
herring can, in the murky Atlantic water and tightly packed shoal, see more
than a few of its neighbours. The possibility of a leader herring coordinating this
shoal is absurd, and besides, how would it orchestrate the shoals movements? It
seems likely, therefore, that the shoal is an emergent entity, produced by local,
de-centralised interactions.

2.2 Arti�cial swarms

Evidence that �ocks and swarms are self-organising is provided by the �boid�
animations of Reynolds (Reynolds 1987). The centralized approach to anima-
tions of particle systems (fog, bees in a swarm, bu�alo in a herd) is to formulate
the collective behaviour as a script which each entity must obey. Swarming
behaviour is not emergent because it is built into the script from the outset.
However, Reynold's discovery that convincing animations can result from local,
de-centralised rules has done much to support the hypothesis that swarms and
�ocks are self-organising. The collective behaviour of the group is emergent
because the rules concerning the parts of the swarm do not contain any notion
of the whole. Additionally, de-centralisation explains the scalability of natural
swarms. The variation of swarm sizes over six orders of magnitude suggests that
swarms must have linear complexity. Early examples of behavioural animations
using the boids algorithm include bat swarms and penguin �ocks in the �lm
Batman Returns (Burton 1992) and the wildebeest stamped in The Lion King
(Allers and Minko� 1994).

Contemporary swarm algorithms follow this basic principle and can be split
into three groups, although there are overlaps. The grouping is in order of
faithfulness to natural swarms:

1. Bio-swarms, the most faithful, are used to develop scienti�c models of
natural systems (for example the re�ned bio-swarm of Couzin et al 2005).
These swarms may be visualised, but the chief purpose is hypothesis de-
velopment and testing.

2. Simulation swarms are visualisations for aesthetic and artistic purposes
and do not need to accurately represent nature (Reynolds 1987, Burton
1992, Allers and Minko� 1994). We can include musical swarms such as
Swarm Music in this category. These swarms move in real time so that
the visualisations have a sense of realism.

3. Social swarms use an information network rather than a spatial region to
de�ne a neighbourhood for interactions. Social swarms are frequently used
to solve mathematical problems, as in ant colony optimisation, Bonabeau
et al 1999, and particle swarm optimisation (PSO), Kennedy et al 2001.

3



i k
j

a t t r
r e p u l

S ( i )
vx

Figure 1: Swarming rules. Particle i, currently at x and moving with velocity
v, is attracted to particle j and repelled from particle k. The other particles are
outside i's perception, S(i).

These swarms have the loosest connection to nature: the visualisations
take secondary importance to the algorithmic details and in fact they can
look quite unrealistic.

Swarms which use a spatial neighbourhood typically assume that the individuals
have a �nite range of perception in which a given individual feels the in�uence
of neighbours. Typically, individuals repel each other at close range, attract
each other at medium range and are oblivious to each other at long range (Fig-
ure 1). The attractions provide coherence, maintaining a shared neighbourhood
(which may be a sub-swarm, or the entire swarm) and the repulsions prevent
collisions. Figure 1 illustrates the idea. The attractive and repulsive acceler-
ations are the analogues of positive and negative feedback. At its simplest, a
swarm algorithm considers the individual swarming participants as purely dy-
namic entities. These entities are represented as point particles in d-dimensional
real space with dynamic state(x, v). The basic rules governing the interactions
between neighbouring particles in a swarm or �ock are:

1. If apart, move closer (Cohesion)

2. If too close move apart (Separation)

3. Attempt to match velocities (Alignment)

The �nal rule only applies collectives where there the entities move in unison,
such as �ocks, herds and schools. Swarming entities have more chaotic motions
and drop the rule of alignment.

The dynamical update equations of swarm algorithms are discretisations of
Newton's laws. The update of particle i of swarm S is

4



ai =
1
m

f(S(i), α) (1)

vi(t + 1) = vi(t) + ai (2)

vi(t + 1) = min(vi(t), vmax) (3)

xi(t + 1) = xi(t) + vi(t + 1) (4)

where the time increment dt = 1 and S(i) is the sub-swarm comprised of i
and its neighbours. The rules 1-3 above are embodied in the particle accelera-
tions ai. These accelerations are computed by a force law f , which is a function
of dynamic variables, neighbourhoodS(i), and parameters α. The mass m of the
particle is usually set to unity, and the physics terms 'force' and 'acceleration'
are synonymous in this context. The acceleration parameters characterise the
strength of the intra-particle forces and the construction of S(i), for example
by specifying a radius of perception (bio and simulation swarms), or a network
topology (social swarms).

Equation 3 is an optional speed clamp that can be used to limit particle ve-
locity in the case of high accelerations. Some swarm implementations, especially
bio and simulation swarms, use a swarming function, Equation 1, that produces
accelerations of �xed magnitude and clamping is never necessary. These �steer-
ing� accelerations cause the velocity vector to rotate, and do not cause changes
in speed. For example, the attraction of a particle at xi towards a neighbouring
particle at xj might be the steering acceleration,

ai =
xj − xi

|xj − xi|
(5)

The calculation of ai in Equation 1 consists of a sum of attractive and repul-
sive terms. Particles perceive each other and other attractors with a region of
perception. At long distances, particles attract, but at shorter distances repul-
sion will dominate. Bio-swarms use three concentric zones; the rule of cohesion
applies in the outer zone, alignment applies in a middle zone, and at short
distances the rule of separation dominates (Couzin et al 2002). Individuals in
simulation and bio-swarms may also have a "blind volume" in which neighbours
are undetectable.

Social swarms employ an information network that is topological rather than
spatial. Additionally, the particles possess a memory and so are more than
merely dynamic entities. The accelerations in PSO are not constant magnitude
steering vectors but are spring-like,

ai = C(pi − xi) (6)

where C is a spring constant and pi is a good location previously visited by
particle i, or by any other particle in i's topological neighbourhood. Conver-
gence, and the stabilisation of the swarm within a search space, occur through
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energy loss and the particle displacements become progressively smaller and the
search intensi�es. This energy loss is invoked by a frictional drag force. The at-
traction of a particle to a previous best position can be viewed as a stigmergetic
interaction. Particles leave behind markers pi at promising locations, and the
markers are available to any other particle in the social network, irrespective of
distance.

The music swarms that will be discussed in this chapter, employ elements
of simulation and social swarms. Swarm Music and Swarm Granulator use
spatial neighbourhoods and spring or steering accelerations. The particles in
Swarm Techtiles communicate stigmergetically by depositing markers at a highly
textured region of an image. The neighbourhood is again spatial although the
rule for interpretation of each particle in terms of musical parameters is social
in origin.

In summary, simulation swarms and visualisations of social and bio-swarms
reveal self-organisational properties: the swarm as a whole has a spatial identity
with globally connected neighbourhoods, the swarm can act as a single entity
(spontaneous movement of every particle in an arbitrary direction de�ned, for
example, by a breakaway particle), and the formation of spatially separate sub-
swarms, that may later merge. The swarm rules are simple to implement -
considerably simpler than trying to write top-down rules - and the behaviour
does not depend on �ne tuning of the acceleration parameters. The emergent
organisation at the swarm level �ts with the premises of SO since the algorithm
incorporates positive feedback (coherence), negative feedback (separation) and
complexity (many particles, stigmergetic e�ects, blind volumes etc.).

3 Swarming and descriptions of music

This section establishes the link between swarming, SO and descriptions of
music. We distinguish here the formal, music-theoretic description of music
as notes, metre, dynamics, harmony etc. and the performance itself, which
is an inter-musician exchange exchange of sonic events. The following section
considers the relationship between swarming, stigmergy and the performance of
music.

3.1 Levels of description

From a music-theoretic perspective, music is commonly analysed hierarchically.
For example, a work of (classical) Western art music is usually thought as the
organisation of melodies, which themselves are built from phrases. The phrases
are comprised of individual notes, and the whole structure is bound together by
rhythm and metre. A classi�cation loosely based on perceptual time-scales can
be summarised, with suggested time-scales, (Xenakis 1989, Roads 2001) :

1. Micro. This scale extends from the limit of timbre perception (tenths of
a millisecond, Gabor 1947) up to the duration of notes or other sound
objects.
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2. Mini (note). This level includes notes and any other sound from a known
or even unidenti�able source (sound objects, Schae�er 1959) of duration
tenths of a second to several seconds.

3. Meso (phrase). This level corresponds to phrases or groups of mini-events
and occupies several to dozens of seconds. Melodic, contrapuntal and
rhythmic relationships between objects are noticeable at this level.

4. Macro. This longer lasting duration of time encompasses form and lasts
several minutes or more. Corresponding to the architecture of a compo-
sition or improvisation, this level is perceived either through recollection
or by knowledge of a particular macro-structure (for example, knowledge
that a piece is written in sonata form).

Digital music also includes an imperceivable sample level of sound, ranging
from a single digital sample at hundredths of a millisecond, up to the shortest
timbred-sound. Clearly such schemes are not unambiguous, and arguably over-
con�ne music to a rigid structure that is subservient to notation (Wishart 1966).
However the analysis by levels is useful for our purpose here, which is to establish
how swarming might relate to music.

3.2 Swarming

Imagine, rather whimsically, an abstract note-to-be as some kind of autonomous
individual, able to wander at will in a "music parameter space". This space
might be a score, or some other abstract space of musical dimensions. As it
moves through this space, its characteristics - pitch, loudness, duration and
onset time - will change. The note-to-be does not wander aimlessly, however; it
is attracted to other note individuals, and soon groupings of notes form. Notes
avoid collisions and sometimes dart away from the group. Other groupings are
formed in distant regions of music space; sometimes groups collide and unite.

These swarms of melody are composed of notes that do not know they are

part of a tune. The notes have not been placed by a higher level imperative;
rather, melody is an emergent property of the note-swarm, related to the self-
organised pattern of the swarming individuals (Blackwell 2001). Collision avoid-
ance between notes mitigates against too much repetition, which is balanced by
an inter-note attraction which prevents too much variation. Observation of com-
posed melodies shows that they occupy constrained regions of music parameter
space, frequently moving step wise, suggesting a strong tensile force between
notes, and with leaps for excitement, as produced, in our analogy, by random
�uctuations. Examples of melodic movement are to be found in many books on
composition, for example Sturman 1983.

Swarming can be also be inferred from the harmonic principles of consonance
and dissonance (Piston 1978), endemic in the common practise of Western art
music, and in contemporary popular music. Harmony can be simplistically
viewed as an attraction towards the consonant musical intervals. Dissonance
can occur, but the result of such a collision, is a relaxation back to consonance.
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Rhythmically too, we can discover the same forces; an attraction of note
onsets to the subdivisions of the beat, and a repulsion away from non-metricity
(unless the music is deliberately rubato, in which case the opposite rule applies).

An analogy has been suggested between musical organisation at the note
level, but similar principles can be construed at the meso level where a phrase
may be considered as a "unit of musical thought, like a sentence or a clause"
(Piston 1978: 93), or at the macro level where groups of phrases produce sec-
tional structuring, as in the exposition, development, recapitulation and coda
sections of the classical sonata form, or the AABA structure of popular songs.
These principles might also be applied at the micro or sample levels (Blackwell
and Young 2004a, b, Blackwell and Je�eries 2005).

At each level we notice a tension between repetition and variation, a force
for similarity (positive feedback) that is balanced by a repulsion (negative feed-
back) away from sameness. Too much similarity is boring for the listener, and
too much variation can imbue the music with a feeling of disorganisation (Coker
1986: 15). The idea from emergence is that structure at level n can arise from
local interactions at level n− 1 and need not be enforced by top-down pressure.
SO provides an appealing picture for the creation of novelty through random
exploration and reinforcement, and the relationship between positive and nega-
tive feedback is compatible with our psychological expectations of music. These
arguments suggest a di�erent view of musical organisation, complimenting the
traditional syntactical, top-down description.

As we have seen, swarming particles move in a d-dimensional real space with
a swarming algorithm f that moves the particles forward in time. Swarming
patterns can be interpreted musically as a succession of musical/sonic events.
In this picture, music is regarded as a temporal structure of meaningless level-
dependent entities, since the rules governing the interactions do not derive from
musical concerns. Meaning itself can only emerge, and is only apparent at, the
next highest level.

4 Performing swarms

4.1 Interactive model

This section considers the performative, rather than the descriptive, aspects
of music and self-organisation. Music performance, in contradistinction to the
structural analysis of music, is highly interactive and uncertain. Whether re-
hearsed or extemporised, unknowable features of performance enter through
the unpredictability of individual interpretation, audience involvement, acous-
tics and other external factors. This section describes a model of performance
that encompasses current computer music practise and is well suited for the
development of new evolutionary and swarm-based music systems.

Improvised music is highly interactive and is the best exemplar of the paral-
lels between performance and SO. A performance of freely improvised music is
distinguished from jazz (which includes improvisation within a pre-de�ned struc-
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ture) and other compositional genres by the lack of advance planning. There is
no leader, no rehearsal, no score and no written instructions. Musicians simply
assemble on stage and begin playing their instruments. All musical directions,
cues, initiatives and roles are therefore communicated by musical utterances,
and by body language. Surprisingly, this de-centralised, potentially lawless,
style of music making can produce remarkably well formed improvisations. In
other words, spontaneous improvisations are capable of structuring at the macro
level; the emergence of form is a consequence of the temporally local interactions
between performers.

An examination of group dynamics in the light of the ingredients of self-
organisation - positive and negative feedback, ampli�cation of �uctuations and
complex interactions - is revealing. There is a human tendency to conform. If
the direction of an improvisation is towards increasing excitement (for example
by playing louder, faster and with more dissonance), there is a strong compulsion
to join in and reinforce this �ow. In dynamical terms, this can be regarded as
an attraction towards a gestural, emotional target. This positive feedback is
counterbalanced by a personal desire to innovate. In the language of dynamic
systems, the musical target or attractor has a repulsive force that de�ects away
from exact repetition. Improvisations can include sudden changes in mood and
musical direction, as if orchestrated. Dynamically, a small �uctuation caused
by a random exploration can precipitate a movement by the whole group and
the proto-idea is ampli�ed. The unique constitution of the performing group
and the non-linearity of the abstract performance space provides uncertain,
complex, non-linear interactions. It seems therefore that a group performance
has the potential to be self-organising.

Swarms are, as we have seen, self-organising, and might therefore implement
these ideas. However, for the analogy between SO and improvisation to be prac-
tically useful, the relationship between the performing group, and a computer
music system running a virtual swarm, must be �eshed out. One approach is
to model each individual as a particle. However particles in a swarm move in a
shared space, and it is very hard to see how to de�ne this space without giving
the musicians (and the computer) precise instructions about how to interact
and move. Although there is some precedent for this approach in dance (Turner
2006), this scheme is in con�ict with a musicians' own perspective on what it
is to improvise. Rule speci�cation, after all, is a compositional rather than an
improvisational device.

Instead, each individual carries with her/him a unique representation of
music and of sound events. This representation is a product of aesthetics, ex-
perience, training, temperament and many other factors. He/she might �hear�
a sound event in a di�erent way: as a C#, as a squeal, as the fourth note in a
sequence, as angry etc., or indeed in many of these at the same time. Ideas, as
expressed in this space, evolve until an intention is formed, and new sound out-
put produced. The representations are personal, hidden even; fellow musicians
can only access external sound events, and possibly infer intention from visual
cues.

The solution adopted in Swarm Music (Blackwell 2001) mirrors this informal
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Figure 2: In this diagram, particles are blobs and attractors are triangles. The
left diagram shows three sub-swarms S(1 − 3) swarming in a space H around
an attractor p. The right hand diagram depicts the interactive model. Here the
sub-swarms move in separate spaces H(1 − 3). Each space is replete with an
image of the sound object, E.

account. Each individual is regarded as a sub-swarm rather than a particle. The
sub-swarms move in secret, hidden spaces; external sound events are parame-
terised as objects in the environment of each sub-swarm. Interaction between
sub-swarms is now possible through a stigmergetic mechanism. Events at mi-
cro, mini and meso levels are parameterised according to the internal represen-
tations available to any individual. These parameterisations constitute "sound
objects" which populate the internal spaces of each individual, whether human
or machine. To the participant, these objects act rather like messages, in�u-
encing stigmergetically the �ow of one's own internal states. Collaboration and
self-organisation between the sub-swarms can still happen, but unlike natural
systems, each subswarm/individual moves in a distinct space, Figure 2.

4.2 Live algorithms

The model of performance as a self-organising system suggests ways that ma-
chines might interact autonomously, rather merely automatically or manually,
with people. Autonomy implies that an interacting system can support group
activity, as well as introduce novel elements, and all without the presence of an
operator. The model sketched in the preceding section suggests that internal
state �ow, as generated by a swarm simulation, can act as an �ideas generator�.
Interaction with the real world is e�ected by forming an image, as an attractor
for example, of external events in the state space of the system. This image
informs, but does not govern, state �ow. State �ow, and hence output, is not
contingent on input: the system is capable of making contributions in periods
when the group is silent and is capable of silence when the group is active. Self-
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Figure 3: Modular structure of a live algorithm showing analysis (P ), syn-
thesis (Q) and patterning (f) modules. In this �gure, a swarm provides spatio-
temporal patterns as it self-organises around an attractor (triangle). Q converts
swarming con�gurations into musical patterns E.

organisation around attractors is a supportive activity and the ampli�cation of
spontaneous �uctuations away from an attractor gives rise to novelty.

The idea that interaction involves state change rather than parameter selec-
tion is an important aspect in the design of �live algorithms� (Blackwell and
Young 2005). A live algorithm is an autonomous music system capable of
human-compatible performance. Several live algorithms have been developed;
the Voyager system of George Lewis (Lewis 2000), Al Biles' GenJam (Biles 2006)
and Francois Pachet's Continuator (Pachet 2004) are notable examples. Many
issues surrounding machine interaction are covered in Rowe 2004. The proposed
architecture for live algorithms builds on the interactive model of section 4.1.
A major advantage of the interactive model is that knowledge of collaborators'
internal states are not necessary. This circumvents the di�culty of modelling, in
a live algorithm, human intentionality and lessons the problems humans might
have in interacting with an algorithm whose logical process depart greatly from
human experience.

A modular structure for live algorithms has been proposed by Blackwell and
Young 2004b, 2005. This architecture is shown is shown in Figure 3. External
sound objects E are parameterised as internal images p by an interpretative,
analytical module P . P corresponds to our ability to interpret incoming sound
in terms of internal representations. A patterning, ideas engine f transforms
internal states x in an internal space H. This module represents the restless �ow
of ideas that an improviser might have, ideas that are guided, but not determined
by, inputs p. Many possible choices of patterners f exist, including neural
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networks, evolutionary algorithms and swarm simulations. A third module,
Q, re-interprets internal x as external sound. This involves a mapping onto
synthesizer controls q. Q is a synthesis module, for example a MIDI sythnesizer
or a granular synthesizer, and represents the conversion of volition into action.
This architecture is general enough to subsume contemporary computer music
practices such as (manual) live electronics and live coding and the automated
process of algorithmic/generative music (Blackwell and Young 2005).

Since interaction with internal states can only occur if the state space con-
tains an image of the environment, and participation with the environment can
only happen if system state is mapped to sound, the live algorithm architecture
is minimal. Systems of arbitrary complexity can be built by layering and cross-
wiring between modules. However, all interactive systems (where interaction is
de�ned as state change) must reduce to this PQf architecture. Since analysis
(P ), synthesis (Q) and generative (f) algorithms are individually the subject of
much current research, it is hoped that much progress in live algorithm research
can be made by connecting pre-existing units.

4.3 Autonomy

The swarming function f can be written as

x(t + 1) = f(x(t), v(t), p(t), α) (7)

where {x, v} are dynamic variables, p = P (E) is the image of the envi-
ronment and α is a list of undetermined parameters, for example maximum
velocity, spring constants and radius of perception. The α's can be thought of
as controls, pre-sets or algorithmic constants. They can be adjusted in real time
by an operator as in the practices of live electronics and live coding. Potentially
the α's, along with the choice of representation, will have a huge a�ect on the
musicality of the system, governing many features of the output. It is important
to distinguish system characteristics from autonomy. Live algorithms, just like
humans, may be quite idiosyncratic, and this would be an advantage in an im-
provised context, but this need not a�ect their ability to interact. The α's might
be interdependent, α1 = α1(α2, α3 . . .) and/or contextual α = α(x, v, p) and
often the α's are descriptions at the next higher musical level. The challenge
for the designer of an autonomous system is to �nd a self-regulating, contextual
condition for each undetermined parameter αj so that the system is �exible,
adaptable to the musical context and does not require any tuning by hand. One
solution for determining an α and increasing system autonomy in Swarm Music
is presented in Section 7.

4.4 Visualising the algorithm

Figure 3 does not depict a feed-through system. The arrows show direction
of parameter �ow, not ordering, and each module is intended to operate con-
currently. The state �ow x(t) → x(t + 1) can be run as a simulation i.e. a
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visualisation shows entities moving at realistic speeds. A visualisation serves
as an embodiment of the algorithm, and gives clues on system behaviour to
participating musicians (and to the audience). This visualisation will only be
useful to us if it proceeds at a comprehensible pace, and does not include too
much information. In a sense, the visualisation aids overall transparency of the
system; visual cues are important for person-person interaction, and their value
cannot be underestimated in machine-human interaction too.

The requirement that the algorithm is running a simulation of a real, or
an imagined, natural system means that the update loop must contain a sleep
function that links the iterative time t to real time τ . For example, the desired
velocity of the particle across the screen is a function of the clamping velocity,
vmax, and the nominal update time interval ∆τ . A sleep function can halt the
update loop at each iteration in order to preserve ∆τ and ensure that states
move at a �xed speed. Without such a consideration, the algorithm will run
as fast as a CPU will allow, tying the algorithm to a particular machine, and
making behaviour inconsistent.

5 Swarm Music

5.1 Overview of live algorithms based on swarming

The interactive model of Section 4.1 and the live algorithms architecture of
Section 4.2 has been implemented in three systems, Swarm Music (Blackwell
and Bentley 2002), Swarm Granulator (Blackwell and Young 2004a) and Swarm
Techtiles (Blackwell and Je�eries 2005). In each case, the internal states x are
particle positions in a swarm andf is the swarming function, Equation 7. The
systems di�er, however, in representational levels and on the interpretation of
the internal space H.

The space in Swarm Music is spanned by parameters salient at mini (note)
and meso (phrase) levels. Swarm Granulator has an internal representation
at the micro (granular) and Swarm Techtiles operates at the sample and micro
level. In both Swarm Music and Swarm Granulator, attractors p are parameter-
isations of the input stream and are placed directly in an otherwise featureless
H. Swarm particles are drawn towards any attractors in their zone of percep-
tion, and particle positions are interpreted one by one as synthesizer parameters.
The �ow of the swarm through H therefore corresponds to a melody (Swarm
Music), or a stream of texture (Swarm Granulator).

Swarm Techtiles uses elements from social and simulation swarms and oper-
ates between sample and micro-levels. Particles �y over a landscape of �woven
sound� (a warp-weft mapping of incoming samples onto pixels), searching for
optimum regions of local texture. Particles communicate stigmergetically by
leaving markers at regions of high image texture, and produce sonic improvisa-
tions by unweaving small image tiles into sound. Swarm Granulator and Swarm
Techtiles are described in detail in a review of swarm granulation (Blackwell,
forthcoming).
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axis description symbol

1 event energy/note loudness a
2 time interval between events ∆t
3 event pitch f
4 time duration of events ∆tevent

5 number of simultaneous events in a phrase nchord

6 number of ascending or descending pitches in a phrase nseq

7 similarity between successive phrases s

Table 1: The seven dimensions of Swarm Music

5.2 Interpretation

Swarm Music has developed from a four to a seven dimensional system. Four
dimensions are occupied by mini (note) level parameters and the other three
dimensions correspond to phrase level parameterisations. A screen shot from
Swarm Music, Fig.4, shows the �rst three dimensions of an N -particle swarm.

The listening module, P can receive either audio or MIDI. Digital audio
is converted into MIDI messages by an inbuilt event and pitch detector which
relates average event energy in decibels to MIDI "velocity", and the dominant
frequency of a Fast Fourier spectrum to MIDI note number (middle C = 60,
C# = 61 etc.). Otherwise, a MIDI source is plugged directly into P .

P extracts note loudness a and pitch f from the MIDI message. Additionally,
P keeps track of �ve other features. All seven axes are speci�ed in Table 1.
Axis seven has only recently been incorporated in Swarm Music and is reported
here for the �rst time. These features become the seven components of the
attractor p. There are as many attractors as there are particles, and attractors
are replaced in turn, so the system only as a memory of the last N events (this
constitutes a single phrase in Swarm Music) that it has heard. The attractors,
which act like pheromones to the swarm, rapidly evaporate.

Apart from the four note-level axes, 1-4, Swarm Music incorporates three
phrase-level dimensions, allowing for swarming in a subspace of phrase param-
eterisations. The �fth axis is chord number. Each incoming phrase is examined
for the number of coincident, or near coincident, events and this number be-
comes the �fth component, p5 of the new attractor. The sixth dimension is the
number of consecutive ascending note-numbers (ranging from −N to +N , with
negative values indicating descending sequences) over the phrase. The seventh
dimension represents the similarity of two adjacent phrases with a similarity
measure. The similaritys is a value in the unit interval with s = 1 for a perfect
N note match (by note number only) between the last two phrases. A similarity
of zero means that there were no matches.

The swarm has N particles and these are interpreted, by the synthesis mod-
ule Q, as a set SN of N notes. Each note is described by four parameter 1-4,
{a, ∆t, f, ∆tevent}. The loudness a of each note in SN is determined by the �rst
component, x1 of each particle's position. Onset time interval (in the absence
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Figure 4: A �ve particle swarm. Particles are depicted as spheres and attractors
as cones. The mappings into the three dimensions of this visualisation are:
loudness → out-of-page; onset time interval → left-right and pitch→ up-down

15



of chords) between notes, pitch and note duration correspond to components
x2−4.

Phrase descriptions are the properties of a group of notes and not of an
individual. Similarly, the phrase descriptions for SN must be a property of the
swarm as a whole. The swarm centre of mass,

x̄ =
∑

all particles

x (8)

is a convenient measure of swarm con�guration. Q uses components x̄5−7 of
the centre of mass to modify the phrase SN . If the chord number, nchord = x̄5

is larger than 1, then the∆t's of the �rst nchord notes of SN are set to zero.
This will ensure that they will sound simultaneously. The �rst nseq = x̄6 notes
of SN are sorted by pitch. (The system also allows sorting by any of the other
three note level parameters {a, ∆t, ∆tevent}.) The �nal phrase parameter, x̄7,
is unusual because it does not a�ect SN ; rather it adjusts a parameter in the
swarming module f . This is discussed in detail below.

5.3 Design

The design of a swarming system for music requires two major decisions, namely
representation and dynamics. Representational issues govern the interpretations
of particle state and the design of P and Q. The choice of dynamics (the
swarming function f) is seemingly independent of representation, but ultimately
they must be related because di�erent particle dynamics might be more or less
appropriate for a given representation. The appropriateness of a dynamics to
a representation is the personal choice of the algorithm designer; there is no
prima facie guide to representation and dynamics, since the design of a creative
system is not logically determined.

Interpretation of the swarming patterns must be accomplished by a mapping
of the state of each particle onto a musical/sonic parameter, which in turn is
rendered by a synthesizer. This general scheme allows for mappings of any
complexity (or simplicity). Since the mappings are essentially arbitrary, some
guiding principle is needed, at least to get started. The principle of transparency
has been suggested (Blackwell and Young 2004b): the interpretative mapping
should be comprehensible to the audience, and to collaborating musicians, so
that the relationship between the particle movements and the output is clear.
The swarm itself may be visualised in order to negotiate the digital divide
between the workings of the algorithm and the output.

The principle of transparency urges the design to be as simple as possible,
even to the extent of a literal interpretation of music descriptions. Swarm Music
was originally intended as a note-level improviser, and notes have loudness,
pitch and timing corresponding to dimensions 1-4. The interpretation of these
dimensions is very transparent. If a particle were to �nd itself at an attractor at
p, it would output the same MIDI-parameterised notes that the system captured.
In fact, due to the �nite kinetic energy and the erratic particle movements,
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the swarm arranges itself around the attracting group, and outputs a melody
that has a resemblance in rhythm, pitch sequence and loudness to the captured
phrase.

In terms of the visualisation, a literal interpretation is to map pitch to height
(x3-axis, towards the top of the screen) and loudness to closeness to the viewer
(x1-axis, "out" of screen). The mapping in each case is linear. The temporal
parameters of note onset time and note duration are harder to map. One idea
is to use the velocity of the particles as an indicator of rhythm, but this is
problematic for two reasons. Firstly, particles in swarm simulations usually �y
at a set speed, as determined by a velocity clamping which occurs immediately
after velocity update, Equation 3. Swarm Music, and optimisation swarms, use
spring like forces,

aattr
i = C

∑
all perceived attractors

(p− xi) (9)

but Swarm Music uses a sti� spring constant C so that clamping is nearly
always employed, and only steering occurs. The second problem with possible
interpretations of velocity is that self-organisation would have to take place in
the 2Nd-dimensional phase space of position and velocity. However, there is
little, if any organisation in velocity for a swarm, rather the organisation is
revealed in the sequence of spatial patterns. Whilst velocity organisation does
occur in �ocks, it arises by virtue of the velocity aligning term in the dynamics
and is not emergent.

Swarm Music, Granulator and Techtiles therefore derive their temporal in-
terpretations from the spatial con�guration of the particles. In Swarm Music,
the x2-axis is calibrated in beats per minute (∼ 1

∆t )); each particle's position
along this axis is interpreted as the time interval between the onset of this par-
ticle's note and the immediately proceeding one. Spatially coherent swarms,
where each particle has a similar x2, will yield regular rhythms, and widely
scattered particles or sub-swarms will produce a high diversity of onset times.
A similar scheme is used for the x4 component, note durations.

6 Experience

6.1 Performance

An important aspect of Swarm Music is the use of performance variables as
part of the generative framework. Human performers will invariably �interpret�
a score, since a complete set of performance characteristics cannot be speci�ed.
For example, a musician can, in performance, vary tempo and rhythm, as well
as dynamics (changes in loudness). Variations can happen at any structural
level. Swarm Music could be used as a score generator by saving output MIDI
events to �le. However, Swarm Music is better exploited as an improviser in
partnership with a human(s). The system is able to quickly respond to incoming
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musical gestures with swarming melodies and rhythms. There is no notion
of �xed tempo; rather, rhythms and dynamics are constantly changing due
to the swarming motion of the particles, yet there is always a connection to
the external sonic environment because of the mapping from incoming sounds
to attractors. The system moves freely with the improvisation, appearing to
interact responsively with a partner.

Another reason for the perceived musicality of Swarm Music is the use of
spring forces to determine particle accelerations. Typically, spring forces pro-
duce oscillatory motion, with the period of oscillation governed by the strength
of the spring. The update rule, Equation 1, is a sum of attracting spring forces,
Equation9, and Coulomb repulsions between neighbouring particles,

arepul
i = K

∑
all perceived particles

(xi − xj)
(xi − xj)3

(10)

where K is a constant. Although particle motion is subject to irregular �uc-
tuations due to the disturbances caused by the positioning of new attractors,
the �nite step size of the update, and the Coulomb repulsions, a remnant of os-
cillatory motion remains. This motion produces swings to loudness, pitch, note
duration and rhythm and are a characteristic of the system. It is expected that
live algorithms, just like human improvisers, should be idiosyncratic (Blackwell
and Young 2005).

6.2 Recordings

Recording 1 on the cd demonstrates the interactivity of Swarm Music. The
recording consists of seven improvisations where a musician (heard on the left
channel) varies seven properties in turn (amplitude, onset interval, pitch, note
duration, chord number, sequence number and similarity). The response of
the �ve particle swarm can be heard in the right channel. Recording 2 is a
performance of AutumnMissed, an improvisation of a 2-swarm (Blackwell 2003).
A 2-swarm is two separate swarms, both receiving the same input from the
outside environment, and both able to send output to each other, so that the
swarms may listen to each other, or to the outside world, or to both. In Autumn
Missed, both swarm are listening to each other and, in an imitation of left and
right parts of piano music, Swarm A restricts its output to notes below middle
C, Swarm B is restricted to output above middle C. A typical screenshot of a
2-swarm improvisation is shown in Figure 5. In recording 8, swarm A is mixed
to the left channel, and swarm B to the right.

6.3 Other examples of swarming in music

This summary reviews three other examples of music systems employing swarms
and �ocks. These systems represent alternative approaches to swarm simula-
tions: visualisations, soni�cations and non-sonic interaction. Each system is
viewed from the perspective of the PQf architecture.
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Figure 5: Improvisation with a 2-swarm. The left swarm (swarm A) has sponta-
neously began to move along the x1and x3 axis (towards the bottom right-hand
corner of H). The image of this movement in the right swarm (swarm B) can
be seen in the distribution of attractors which mirror the positions of particles
of swarm A. It is impossible to say if the swarm B will follow swarm A's ini-
tiative; attractors may be placed in the top right-hand corner of HA, re�ecting
the positions of swarm B, and this may draw swarm A back
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Visualisations of music in terms of swarms and �ocks has been explored by
various workers. An early example is Rowe and Singer 1997; the behaviour of
a boid animation is controlled by acoustical information supplied by musicians.
The �ocks do not themselves produce sounds however; in the language of PDf ,
the system consists of analysis module P and swarming function f .

Soni�cations of swarms have also been attempted. Spector and Klein 2002
were inspired by Swarm Music to add musical events to their swarm and �ock
simulations, implemented in the BREVE simulation system. Notes are asso-
ciated with certain events within the system, for example, feeding. Di�erent
instrument timbres are associated with each of the three species, and gradual
musical transitions occur as each species enjoys a period of feeding. This is an
example of soni�cation of a �ock of agents, although the interpretation module
Q depends on agent behaviour and not directly on �ock spatial patterning. The
authors report that in an extension of their system, spectrum and dynamics in-
formation from recorded music was used to alter constants in the swarm update
formula although few details are given. The shift to live music would presum-
ably be easy to make so that this system would comprise a full PQfarchitecture,
although it is not apparent how transparent it would be.

Non-sonic interactions with swarms may proceed through physical gestures,
rather than by music. Unemi and Bisig 2005 have developed an interactive boid
simulation that acts as a virtual instrument. The boids move in a 3D space,
with boid coordinates interpreted as pan, pitch and loudness. Users interact
with the �ocks by making physical movements which are captured by a camera.
The user can change the instrumentation, melodic and rhythmic patterns of the
�ock in a process not dissimilar to conduction. The synthesis Q and f modules
of this system bear much in common with Swarm Music, but since their P only
accepts visual information, the system would not serve as a live algorithm.

7 Autonomy

Swarm Music has a user interface enabling direct access to many system pa-
rameters. The parameters α of the swarming function, Equation 1, for example
spring constants and maximum speeds along each dimension, can be controlled
in real time. Interpretative parameters in Q such as the size of each axis can
also be manipulated; pitch interpretation of particle position might be placed in
the range MIDI 60 to 95, note onset times between 1

120 BPM and 1
60 BPM , loud-

ness between MIDI 64 and 127 etc. These real-time adjustments enable swarm
"conduction", a term that refers to Morris's conducted improvisations of groups
and orchestras through a vocabulary of signs and gestures (Morris 2006). In a
sense, conduction regards an entire orchestra as an instrument. This centralised
control, of course, departs markedly from emergence through local interactions.
A user may directly in�uence the swarm and its interpretation manually, and
this has a considerable a�ect on the output, but the system is not operating as
a live algorithm.

Swarm Music began as a four dimensional system operating solely at the
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E HP
Q

Figure 6: Interpretative functions P and Q map from the external environment,
E to the internal space H of the live algorithm

note (mini) level. Live experience with the system showed that hand-tuning of
f and Q often occurred during improvisations. Intervention at the interpreta-
tive stage is equivalent to adjusting phrase-level characteristics of the system.
However, in the interests of autonomy, meso and macro level characteristics
should be emergent rather than controlled. Luckily, a mechanism to transform
(controllable) parameters into variables is suggested by the PQf architecture.

Any interpretative action can become autonomous by extending the dimen-
sionality of the system. A Pnew must be written that listens for the required
characteristic in E. Pnew parametrises this feature of E and maps to an attrac-
tor in H. Swarm interpretation must also be extended so that particle position
components in the new dimension are correctly interpreted by Qnew, ideally for
transparency with Qnew = P−1

new. The �rst conduction controls to be automated
in this way were chord number and pitch sort number, nchord and nseq. The
conceptual mapping between the environment and the internal spaces is shown
in Figure 6

Further live experience with the six dimensional system revealed that the
particle speed control had a big impact on system performance and was fre-
quently adjusted by the operator. The speed control is vmax in Equation 3.
Small vmax means small particle displacements leading to small changes in the
output phrase. This sounds like a variation of a theme or an idea. At vmax = 0,
the swarm is stationary and the output ri�s; large vmax increases the energy of
the particles so they �y further from the attractors and the musical output is
more diverse.

In a big advance towards autonomy, the speed control has recently become
automated. P listens for similarity between incoming phrases, and sets the
vmax attractor component along axis 7 according to a similarity measure. A
simple matching algorithm is currently used. P hears a sequence of notes
{. . . , ei, . . . , ej}, ending on the current (most recently received) note ej . De-
note an N note phrase{ei, . . . , ej}, j = i + N -1 by {i → j}. The similar-
ity s({i → j}, {k → l}) between a sequence {i → j} and an earlier N note
sequence{k → l}, can be de�ned as
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s({i → j}, {k → l}) =
1
N

N−1∑
n=0

c(ei+n, ek+n) (11)

where the correlation between notes, c(ei, ej), can be de�ned to lie in the
interval [0, 1]. A simple measure of note similarity is the absolute value of the
number of steps between ei and ej , normalised to unity. Another measure might
set c(ei, ej) to one if ei = ej , and to zero otherwise. In order to look for the
re-occurrence of an n note sequence, n ≤ N , in the last two N note phrases
(the repeated pattern may have intervening notes), it is necessary to compute
s({i → j}, {k → l}) for k = i − 1, i − 2, . . . , i − N . The maximum of the N
comparisons will then certainly reveal a match if there is one. This de�nes the
overall similarity

s = max
k

s({i → j}, {k → l}))

(Note that identical computations arising from earlier phrase comparisons
in Equation 11 do not need to be performed so the computation of s has linear
complexity.)

Suppose for the sake of argument that P has heard a high similarity over the
last few phrases; perhaps the human partner is playing ri�s. P sets the seventh
component of p to p7 = (1− s) X where X is the linear box size, H = [0, X]7.
The swarm will be consequently be attracted to a region of H where particle
positions x7 are high. Q calculates a speed limit from the swarm centre of mass
according to

vmax = x̄7
V

X
(12)

where V is a maximum speed limit, and modi�es Equation3 accordingly.
This will ensure that particle motion is small or zero even, and the output is also
ri�ng, or slowly evolving. The problem with this scenario is that, should x̄ = 0,
the swarm becomes frozen and incapable of movement, even if later attractors
have small s values! If x̄ is �nite but small, it may take the swarm a very long
time to move across H towards the new attractor. The solution implemented
in Swarm Music is to ensure that Q clamps all vmax components except the
seventh (similarity) component. vmax 7 itself remains �xed and �nite, allowing
movement in this dimension. Particles can now move towards p7, shifting the
swarm centre of mass, and increasing particle speed and diversity.

8 Outlook

What use do swarms have in music? This chapter has answered this question
by arguing that
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1. Theoretic descriptions of music use a hierarchy of levels n, where each
level corresponds to a perceptual time-scale

2. Composing music is a centralised, top-down process: n → n− 1 → n− 2

3. Self-organisation (SO) is an emergent process, observed in natural systems,
producing high level structure from low level interactions: n → n + 1 →
n + 2

4. By analogy with SO, the interaction of musical objects at any level might
produce, without implicit composition, new structure at higher levels

5. Improvised music is a de-centralised activity exhibiting an emergence of
form through the low-level interactions of performers

6. Swarms are an exemplary, paradigmatic model of SO

7. Swarms might be used in music to self-organise musical objects at any
level (sound granules, notes, phrases) into structures at a higher level

8. A model of interaction based on stigmergy has led to the design and im-
plementation of swarm music systems that can interact with people in an
improvised setting as if they were musicians

At the heart of the Swarm Music family of systems is a swarming module f .
The function of f is to provide an almost limitless stream of spatial patterns.
Analysis modules map the external sonic environment into the internal space of
the system where interaction between system state and the external image can
take place. A synthesis module interprets system state as sound.

This three component architecture can be readily adapted to include other
patterning algorithms by substitution for f. Natural computation provides many
examples of possible patterners, for example, evolutionary algorithms and neu-
ral networks. Other examples of possible f 's include chaotic and non-linear
systems from the �eld of dynamical system, multi agent systems from Arti�cial
Intelligence and many models from Arti�cial Life.

One aim of this research e�ort is to develop autonomous music systems
(live algorithms). A swarm inspired interactive model based on stigmergy is
proposed here, although of course other approaches may also be pro�table. The
goal of live algorithms research is not to replace human music making with
an automatic machine; rather it is to augment human experience through the
development of new, algorithmic ways of playing music. The desire is to �nd
arti�cial music that is di�erent from human expression, yet comprehensible.
This overarching principle of transparency should be foremost in the design of
algorithmic systems. The virtue of swarm systems is that a visualisation of
internal process is already in a form that is understandable to us.

It is impossible to predict how live algorithms research might proceed, but a
few observations are pertinent. To start, the description of music into separate
levels is an activity of classi�cation much loved by computer scientists and mu-
sic theoreticians. Human performers, whilst acknowledging this system, perhaps
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see granularities 1 rather than levels. Granularities do not exist in a hierarchy,
but co-exist in a network of relationships. Features at any granularity may
inform choices at any other granularity; no granularity is uppermost. Further-
more, performers always have the option of merging, deleting, re-con�guring and
even spontaneously inventing new granularities during the course of a perfor-
mance. Granularity can be incorporated by the PQf architecture by remarking
that state variables x in the state machine f(x, α) at one granularity can be
mapped to parameters α of another granularity. In this way, emergence can
propagate through the network. Section 7 shows the general scheme.

Arti�cial intelligence might also have much to o�er. AI provides reasoning,
a top-down activity, and learning, an activity based on memory. Advances
may be made by combing a swarm-like system with a deductive mechanism
that develops a degree of top-down structuring; the self organiser becomes an
organising self. The individuals in swarm systems do not possess any memory
and so cannot learn. However, some type of memory is present in the system as
a whole (swarm plus environment). Future swarm music systems might exploit
this by including long-lived pheromone trails.

Machine consciousness is another fertile are for exploration (Holland 2003).
The de�ning feature of a �conscious algorithm� is the ability to self-model. An
arti�cial improviser, if endowed with such a facility, would be able to compare
its own contributions with those of other participants. Such comparisons might
involve a aesthetic function, as well as reference to past experience. The research
issue is not plagued by questions of whether or not arti�cial improvisers are
actually conscious; the idea is to see what other algorithms can be useful to the
overall aim.

Potentially, a biologically inspired system might be able to negotiate the crit-
icism that computer music cannot produce "interesting" music without human
intervention. This is due to its perceived inability to break rules (Miranda 2001:
206). Rules are a feature of top-down organisation. A self-organising system
might produce appealing music, not so much by breaking rules, but by allowing
new rules to spontaneously emerge. Swarm simulations are simple to implement
and provide a complete model of self-organisation. They are therefore a natural
choice for exploring the potential of performing machines.
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