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1. INTRODUCTION

Originally conceived as a modification to the standard PSO
algorithm for use on self-reconfigurable adaptive systems
used in on-chip hardware processes, PSO with discrete re-
combination (PSO-DR) introduces several appealing and ef-
fective modifications, resulting in a simpler variant of the
original [1]. It is one of the more interesting advances in PSO
research over the last few years because these simplifications
apparently do not degrade performance yet they remove var-
ious issues associated with the stochasticity of the PSO accel-
eration parameters that hinder theoretical analysis of PSO.

Physical creation of hardware-based optimizers is a sub-
stantially more intricate undertaking than software imple-
mentations, so fast, simple algorithms are desirable in or-
der to minimize complexity. The comparative straightfor-
wardness of PSO to many other evolutionary optimization
algorithms makes it a good choice for this purpose, and fur-
ther modifications were applied by the authors of [1] in or-
der to simplify it even further and to introduce concepts
from recombinant evolutionary techniques. The resulting al-
gorithm, which can be implemented using only addition and
subtraction operators and a simple 1-bit random number
generator, is well suited for dedicated hardware settings.

Despite this rather specific original design specification,
PSO-DR has shown to be a robust optimizer in its own right,
equalling or surpassing a more common PSO implementa-
tion on a few tested benchmarks [1]. In this paper we ex-
tend the original work of Peña et al. by considering alter-

native topologies and parameter settings, running compar-
isons over a more comprehensive test suite, deriving simpli-
fied variants of the algorithm, and subjecting the model to a
burst analysis.

The following section introduces PSO-DR (known here
as model 1) as originally defined by Peña et al. and summa-
rizes the burst analysis of [2]. Section 3 describes a series of
simplifications to PSO-DR (models 2 and 3) which are intro-
duced in this paper. The motivations for these simplifications
are explained. Section 4 presents the results of performance
experiments of models 1–3, and for comparative purposes,
standard PSO. Following this, the paper proceeds with an
empirical investigation of bursting patterns in recombinant
PSO. The final section together draws together the experi-
mental results of this paper and advances some ideas for the
immediate future of PSO research.

2. PSO WITH DISCRETE RECOMBINATION

The velocity update for particle i in standard PSO (SPSO) in
the inertia weight formalism is

IW : vt+1
id = wvtid +

φ
2
u1
(
pid − xtid

)
+
φ
2
u2
(
pnd − xtid

)
, (1)

where d labels components of the position and velocity
vectors, d = 1, 2, . . . ,D, !pi is the personal best position
achieved by i, !pn is the best position of informers in i’s social
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neighborhood and u1,2∼U(0, 1) [3]. After velocity update,
the particle position is adjusted:

xt+1
id = vt+1

id + xtid. (2)

Peña et al. introduced a recombinant version of PSO by
replacing either the personal best or the neighborhood best
position by the recombinant position [1]. We focus here on
the former for reasons of improved performance and the
more interesting social aspect. A recombinant position vec-
tor !r is defined by

rid = ηd pld +
(
1− ηd

)
prd, (3)

where ηd = U{0, 1} and !pl,r are immediate left and right
neighbors of i in a ring topology. While separate random
numbers ηd are used for separate dimensions d, a single value
is generated for each single dimension and used for both oc-
currences of ηd in that dimension. This places !ri at a corner
of the smallest D-dimensional box which has pl and pr at its
corners.

The authors of [1], in a search for a very efficient imple-
mentation, argued for the removal of the random numbers
u1,2 from (1) and parameter settings φ = 2 and w = 0.5. The
velocity update for the original form of PSO-DR is

DR : vt+1
id = wvtid +

φ
2
(
rid − xtid

)
+
φ
2
(
pnd − xtid

)
. (4)

The choice of φwas based on the observation that φ ≈ 4.0
in standard PSO, but, since u1,2 are uniform in [0, 1], the ex-
pectation value of φu1,2 is 2.0. Furthermore, the multipli-
cation by w = 0.5 can be implemented in hardware by a
right shift operation. While optimal efficiency is desirable for
hardware implementations, this issue does not concern us to
the same degree in this study of (4) and it is one aim of this
paper to study PSO-DR for arbitrary parameter values.

Although (4) contains a random element in the recom-
binant position, the acceleration parameters are constant. In
other words, the update rule has additive rather than mul-
tiplicative stochasticity [2]. This has two ramifications; first,
a stability condition can be computed based on the theory
of second order, fixed parameter, difference equations and
second, recombinant PSO is predicted not to exhibit parti-
cle velocity bursts. The details of these results are to be found
in [2]. The stability condition is

|w| < 1, 0 < φ < 2(1 + w). (5)

It is known that PSO at stagnation, that is, when no im-
provements to personal bests are occurring, and the particles
effectively decouple, exhibits bursts of outliers [4]. These are
temporary excursions of the particle to large distances from
the attractors. A burst will typically grow to a maximum and
then return through a number of damped oscillations to the
region of the attractors. The origin of bursts, and of the con-
comitant fattening of the tails of the position distribution at
stagnation, can be traced to the second-order stochastic dif-
ference equation

x(t + 1) + a(t)x(t) + bx(t − 1) = c(t) (6)

which is equivalent to SPSO with the identification a(t) =
(φ/2)(u1 +u2)−w− 1, b = w, and c(t) = (φ/2)(u1p1 +u2p2)
for fixed attractors p1,2. Since max(|a|) > 0, amplification of
x(t) can occur through repeated multiplication of x(t) by a
despite the second order reduction by multiplication by the
constant b. Interestingly, the distribution tail of |x|, by virtue
of the bursts that become increasingly less probable for in-
creasing size, is fattened compared to an exponential falloff
as provided by, for example, a Gaussian. A theoretical justi-
fication of these power laws and some empirical tests can be
found in [2].

PSO bursts differ from the random outliers generated by
PSO models which replace velocity by sampling from a dis-
tribution with fat tails such as a Richer and Blackwell [5]. In
contradistinction to the outliers of these “bare bones” for-
mulations [6], the outliers from bursts occur in sequence,
and they are one dimensional. Bursting will therefore pro-
duce periods of rectilinear motion where the particle will
have a large velocity parallel to a coordinate axis. Further-
more, large bursts may take the particle outside the search
space. Although this will not incur any penalty in lost func-
tion evaluations if particles that exit the feasible bounds of
the problem are not evaluated, as is the common approach to
this situation, they are not contributing to the search while in
outer space. PSO-DR, which is predicted not to have bursts
[2], therefore provides a salient comparison.

3. SIMPLIFYING RECOMBINANT PSO

This section details the two new recombinant models that are
being proposed in this paper. To begin, an investigation into
PSO-DR reveals more interesting properties of the formula-
tion. Performance plots for a sweep through parameter space
to find an optimal balance between the inertia weight coef-
ficient w and the φ coefficients show that while the optimal
region is spread across the parameter space, it also intersects
the axis for the w term (see Figure 1 for results on selected
functions from Table 1). This demonstrates that the system
is able to obtain good optimal results even at w = 0.0 and
there is no inertia term in the velocity update equations.

Model 2 PSO-DR sets w = 0, with a velocity update,

DR2 : vt+1
id = φ

2
(
rid − xtid

)
+
φ
2
(
pnd − xtid

)
. (7)

Velocity now serves as a dummy variable in the update
equations (1) and (2) and model 2 can be represented as a
single, velocity-free rule

DR2 : xt+1
id = xtid +

φ
2
(
rid − xtid

)
+
φ
2
(
pnd − xtid

)
. (8)

At this point, the two φ terms were detached and another
sweep through parameter space to find an optimal combina-
tion of the recombinant component via its coefficient φ1 and
the neighborhood best component via its coefficient φ2 was
performed. Surprisingly, results again showed that the opti-
mal region intersects an axis, this time for the neighborhood
term (pgd − xtid) (see Figure 2 for selected results).



D. Bratton and T. Blackwell 3

0

1

2

3

4

5

φ
(p

hi
)

0 0.25 0.5 0.75 1

w

Contour plot for PSODR performance on f1

(a) f1

0

1

2

3

4

5

φ
(p

hi
)

0 0.25 0.5 0.75 1

w

Contour plot for performance on f3

(b) f3

0

1

2

3

4

5

φ
(p

hi
)

0 0.25 0.5 0.75 1

w

Contour plot for PSODR performance on f5

(c) f5

0

1

2

3

4

5

φ
(p

hi
)

0 0.25 0.5 0.75 1

w

Contour plot for PSODR performance on f12

(d) f12

Figure 1: Optimal regions for w versus φ in PSO-DR model 1, found empirically through 30 runs for each combination of parameters
w = 0.0, . . . , 1.0,φ = 0.0, . . . , 5.0 at a granularity of 0.1. Each contour line represents a 10% improvement in performance with the region
within the innermost line representing the best performing 10% of possible combinations of w and φ.

This allows a further simplification to the update equa-
tion (4), down to PSO-DR model 3:

DR3 : xt+1
id = xtid + φ

(
rid − xtid

)
(9)

which is clearly a substantial reduction of the original PSO-
DR equation.This PSO variant, if it proves to be viable,
would raise a couple of interesting questions.To what ex-
tent is velocity a necessary component, or is it a relic of the
biological origins of PSO [6]? Secondly, how important is
the neighborhood component drawn from the single best
neighbor? The optimization process of Model 3 is entirely
driven by the recombinant component; this idea is reminis-
cent of fully informed particle swarms (FIPS) [7], where the
entire neighborhood influences particle behavior. However,
whereas FIPS allows every neighbor to influence a particle’s
behavior in every dimension, Model 3 allows only a single

randomly chosen neighbor to fully influence the particle in
each dimension. This gives the particle an updated position
that is a combination of the best positions of all of its neigh-
bors throughout all dimensions.

The following section presents evidence that PSO-DR3 is
a viable alternative to standard PSO by reporting on perfor-
mance results for all three models of PSO-DR over a number
of commonly used test functions.

4. PERFORMANCE EXPERIMENTS

Algorithms were tested over a series of 14 benchmark func-
tions chosen for their variety, shown in Tables 1 and 2. Func-
tions f1 − f3 are unimodal functions with a single mini-
mum, f4 − f9 are complex high-dimensional multimodal
problems, each containing many local minima and a single



4 Journal of Artificial Evolution and Applications

Table 1: Benchmark function equations.

Equation

f1 =
D∑

i=1

x2
i

f2 =
D∑

i=1

( i∑

j=1

xj

)2

f3 =
D−1∑

i=1

{
100

(
xi+1 − x2

i

)2
+
(
xi − 1

)2}

f4 = −
D∑

i=1

xi sin
(√

xi
)

f5 =
D∑

i=1

{
x2
i − 10 cos

(
2πxi

)
+ 10

}

f6 = −20 exp

{
−0.2

√
1
D

∑ D

i=1
x2
i

}
− exp

{
1
D

D∑

i=1

cos
(
2πxi

)
}

+ 20 + e

f7 =
1

4000

D∑

i=1

x2
i −

D∏

i=1

cos
(
xi√
i

)
+ 1

f8 =
π
D

{
10 sin 2(π yi

)
+

D−1∑

i=1

(
yi − 1

)2{
1 + 10 sin 2(π yi+1

)}
+
(
yD − 1

)2
}

+
D∑

i=1

µ
(
xi, 10, 100, 4

)

yi = 1 +
1
4
(
xi + 1

)

µ
(
xi, a, k,m

)
=





k
(
xi − a

)m
xi > a

0 −a ≤ xi ≤ a

k
(
− xi − a

)m
xi < −a

f9 = 0.1

{
sin 2(3πxi

)
+

D−1∑

i=1

(
xi − 1

)2{
1 + sin 2(3πxi+1

)}
+
(
xD − 1

)2

×
{

1 + sin 2(2πxD
)}
}

+
D∑

i=1

µ
(
xi, 5, 100, 4

)

f10 = 4x2
1 − 2.1x4

1 +
1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2

f11 =
{

1 +
(
x1 + x2 + 1

)2(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)}

×
{

30 +
(
2x1 − 3x2

)2(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)}

f12 = −
5∑

i=1

{ 4∑

j=1

(
xj − ai j

)2
+ ci

}−1

f13 = −
7∑

i=1

{ 4∑

j=1

(
xj − ai j

)2
+ ci

}−1

f14 = −
10∑

i=1

{ 4∑

j=1

(
xj − ai j

)2
+ ci

}−1

global optimum, and f10 − f14 are lower-dimensional mul-
timodal problems with few local minima and a single global
optimum apart from f10, which is symmetric about the ori-
gin with two global optima.

Particles were initialized using the region scaling tech-
nique where initialization takes place in an area of the search
space known not to contain the global optimum [8]. To
avoid initializing the entire swarm directly within a local
minimum, as could be possible with f12 − f14 if initializa-
tion takes place in the bottom quarter of the search space
in each dimension (as is common), an area of initialization
composed of the randomly chosen top or bottom quarter

of each dimension was defined, into which all particles were
placed with uniform distribution. This method ensures that
the swarm will not be initialized within the same area for ev-
ery optimization run, but will still be confined to an area at
most 0.25D of the search space, making the chance of ini-
tialization directly on or near the global optimum extremely
unlikely. In instances where the global optimum was located
at the center of the search space (i.e., f1, f2, f5− f7), the func-
tion was shifted by a random vector with maximum mag-
nitude of a tenth of the size of the search space in each di-
mension for each run to remove any chance of a centrist bias
[9].
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Figure 2: Performance plots for φ1 and φ2 in PSO-DR model 2, found empirically through 30 runs for each combination of parameters
φ1 = 0.0, . . . , 4.5,φ2 = 0.0, . . . , 4.5 at granularity 0.1.

Table 2: Benchmark function details.

Function Name D Feasible bounds

f1 Sphere/parabola 30 (−100, 100)D

f2 Schwefel 1.2 30 (−100, 100)D

f3 Generalized Rosenbrock 30 (−30, 30)D

f4 Generalized Schwefel 2.6 30 (−500, 500)D

f5 Generalized Rastrigin 30 (−5.12, 5.12)D

f6 Ackley 30 (−32, 32)D

f7 Generalized Griewank 30 (−600, 600)D

f8 Penalized function P8 30 (−50, 50)D

f9 Penalized function P16 30 (−50, 50)D

f10 Six-hump camel-back 2 (−5, 5)D

f11 Goldstein-price 2 (−2, 2)D

f12 Shekel 5 4 (0, 10)D

f13 Shekel 7 4 (0, 10)D

f14 Shekel 10 4 (0, 10)D

This investigation tested PSO-DR model 1 using both
global (as used in the originally proposed algorithm) and lo-
cal ring topologies for selecting the neighborhood operator
pn. The parameter settings were Pena’s, giving a velocity up-
date with the form

vt+1
id = 0.5vtid +

(
rid − xtid

)
+
(
pnd − xtid

)
. (10)

Results shown for PSO-DR model 2 use the value φ ≈
1.6, while those for PSO-DR model 3 use φ ≈ 1.2. These val-
ues were empirically determined to be optimal for these algo-
rithms; an analytical determination is the subject of current
research. Results for both models 2 and 3 are shown for runs
using a ring topology, which showed superior performance
in testing.

For comparison, results are presented for a standard
PSO algorithm (SPSO), which operates using the constricted

velocity update equation

vt+1 = χ
(
vt +

φ
2
u1
(
pi − xt

)
+
φ
2
u2
(
pg − xt

))
(11)

with φ = 4.1, χ = 0.72984 and with 50 particles [3]. All PSO-
DR model tests were carried out using 50 particles as well.
Algorithm performance was measured as the minimum error
| f (x)− f (x")| found over the trial where f (x") is the fitness
at the global optimum for the problem. Results were averaged
over 30 independent trials, and are displayed, with standard
error, in Table 3. Values less than 10−15 have been rounded to
0.0.

Performance results in Table 3 for all models of PSO-DR
versus SPSO clearly indicate that it is a competitive variant,
especially on highly complex problems such as f5 (Rastrigin).
Statistical tests were performed on these results to determine
the significance of the performance differences between the
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Table 3: Mean error after 30 trials of 300 000 evaluations. Necessary function evaluations are shown where 0.0 error was attained.

SPSO SPSO PSO-DR PSO-DR PSO-DR PSO-DR
Ring Global M1 Ring M1 Global M2 M3

f1
0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

97063 ± 377 46897 ± 421 59322 ± 125 33290 ± 170 60063 ± 41 75810 ± 322

f2
0.12 ± 0.01 0.0± 0.0 0.01 ± 0.002 0.0± 0.0 3.7E-7 ± 7.5E-8 5.14 ± 1.27

— 297800 ± 928 — 168852 ± 1205 — —

f3
6.18 ± 1.07 8.37 ± 2.26 16.79 ± 0.49 0.80 ± 0.29 34.57 ± 5.46 18.64 ± 4.45

— — — — — —

f4
3385 ± 40 3522 ± 32 2697 ± 36 3754 ± 48 2418 ± 27 1830 ± 46

— — — — — —

f5
163.50 ± 5.64 140.16 ± 5.87 44.64 ± 2.71 115.51 ± 7.03 35.21 ± 2.13 9.88 ± 0.86

— — — — — —

f6
18.28 ± 0.85 12.93 ± 1.59 0.68 ± 0.67 18.51 ± 0.90 0.0± 0.0 0.0± 0.0

— — — — 287220 ± 2105 248160 ± 1945

f7
0.0± 0.0 0.019 ± 0.004 0.0± 0.0 0.008 ± 0.002 0.0± 0.0 0.0± 0.0

110616 ± 3320 — 101526 ± 9227 — 81226 ± 6560 70348 ± 2954

f8
0.004 ± 0.003 0.15 ± 0.05 0.0± 0.0 0.05 ± 0.02 0.0± 0.0 0.0± 0.0

— — 61370 ± 249 — 85101 ± 581 95810 ± 655

f9
0.0± 0.0 0.003 ± 0.001 0.0± 0.0 0.002 ± 0.0007 0.0± 0.0 0.0± 0.0

106163 ± 537 — 61793 ± 221 — 86031 ± 377 92416 ± 437

f10
0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

9348 ± 190 11808 ± 445 44577 ± 7608 40015 ± 4483 6103 ± 104 5918 ± 75

f11
0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

8258 ± 104 7080 ± 108 4772 ± 47 3968 ± 27 6720 ± 66 6846 ± 87

f12
0.59 ± 0.33 4.61 ± 0.54 0.17 ± 0.17 4.34 ± 0.59 0.0± 0.0 0.0± 0.0

— — — — 59958 ± 43 16229 ± 855

f13
1.09 ± 0.45 4.40 ± 0.60 0.0± 0.0 2.55 ± 0.62 8.1E-11 ± 1.8E-11 0.0± 0.0

— — 13433 ± 249 — — 14012 ± 764

f14
0.96 ± 0.45 3.24 ± 0.66 0.0± 0.0 3.13 ± 0.66 6.6E-11 ± 1.7E-11 0.0± 0.0

— — 12760 ± 1386 — — 121031004±

two algorithms. To avoid the problem of the probabilistic na-
ture of t-tests potentially affecting results when conducting
multiple significance tests, a modified Bonferroni procedure
was applied to values of α for successive tests [10]. This pro-
cedure involves inversely ranking observations by ascending
values of p, then setting

α′ = α
inverse rank

. (12)

Results for these statistical tests on PSO-DR model 3 and
SPSO are shown in Table 4 and confirm that the performance
is significantly improved on 3 of the 14 tested functions,
equivalent for 10 functions, and worsened for 1 function for
PSO-DR model 3 versus SPSO with ring topology. Perhaps
the most impressive improvement comes for f5 (Rastrigin),
a notoriously difficult multimodal problem that PSO algo-
rithms perform poorly on some problems in high dimen-
sionality.

Due to the high number of function evaluations that
were performed to obtain these results relative to previ-

ous work (where only 30 k–60 k function evaluations might
be performed), selected convergence plots are shown in
Figure 3. These show that the standard PSO obtains supe-
rior results at the very start of the optimization process,
up to 5000 function evaluations for the highest observed
value (Figure 3(b)). After the point at which this occurs,
PSO-DR model 3 surpasses the standard algorithm in per-
formance, and maintains this advantage to the end of the
300 k function evaluations on 7 of the 14 tested problems
( f4 − f6, f8, f12 − f14). On problems for which both algo-
rithms attained equal error levels of 0.0 ( f1, f7, f9 − f11), the
point at which this occurs, that is, when SPSO “catches up”
to PSO-DR model 3, can be observed in Table 3. On av-
erage, SPSO took 25% more function evaluations to attain
the optimum than PSO-DR model 3 on these problems. Fi-
nally, for the two problems on which SPSO outperformed
PSO-DR model 3 ( f2, f3), the same early performance is seen
with PSO-DR model 3 surpassing SPSO in performance early
in the optimization process; in these cases, SPSO eventu-
ally repasses the other algorithm by 50 k function evalua-
tions.
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Table 4: Significance for SPSO versus PSO-DR model 3 with ring topologies.

Function p-value Inverse rank α′ Significant

f4 0 14 0.003 571 Yes
f5 0 13 0.003 846 Yes
f6 0 12 0.004 167 Yes
f2 2.11e-11 10 0.005 Yes
f3 0.0086 11 0.004 545 No
f13 0.02 9 0.005 556 No
f14 0.04 8 0.00 625 No
f12 0.2663 6 0.08 No
f8 0.3215 7 0.007 143 No
f1 1 5 0.01 No
f7 1 4 0.0125 No
f9 1 3 0.016 667 No
f10 1 2 0.025 No
f11 1 1 0.05 No
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Figure 3: Convergence plots for SPSO and PSO-DR model 3 early in the optimization process.

A potential explanation for this behavior lies in the
diversity of the swarms at this point in the optimization
process. Figure 4 shows the mean Euclidean distance be-
tween particles for the corresponding convergence plots of
Figure 3. It should be noted that uniform initialization was
used in the trials used to generate these plots; relative per-
formance between the algorithms was unaffected, and ini-
tializing particle positions uniformly throughout the search
space removes an unrelated phenomenon in subspace ini-
tialization wherein the swarm expands greatly beyond the
relatively small initialization region at the start of the op-
timization process to explore the search space. Expansion
is common in the first few iterations using uniform ini-

tialization as well, but this is inherent to the swarm be-
havior and influenced only by the size of the entire search
space.

As can be seen in the plots of Figure 4, neither swarm
type begins converging immediately following initialization
but rather they maintain their diversity or expand slightly.
On a comparative basis, the standard PSO swarm expands
substantially more than the PSO-DR model 3 swarm; for ex-
ample Figure 4(c) shows that after the first 100 function eval-
uations, the mean distance between particles in the standard
PSO swarm increases from 23 to 31.5, while the PSO-DR
swarm diversity increases only from 23 to 24.5. Similar dis-
parities were observed for all other tested problems.
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Figure 4: Diversity plots for SPSO and PSO-DR model 3 early in the optimization process.

It is reasonable to gather from these results that the
higher swarm diversity for the standard PSO algorithm early
in the optimization process demonstrates a wider spread of
particle dispersion, and hence an improved probability of
finding and starting to explore the basin of attraction for
global or good local optima. PSO-DR model 3 expands very
little, if at all, early in the optimization process, resulting in
delayed acquisition of optimal regions of the search space.

5. EXAMINATION OF BURSTING

Bursts in the velocities of particles are commonly observed
using the standard PSO algorithm. These are generated by

means of the multiplicative stochasticity of the algorithm
[2]. In order to investigate bursting behavior in PSO-DR and
SPSO an empirical measure was devised.

This bursting measure was implemented to highlight
when a particle had a velocity in a single dimension that was
considerably higher than the next highest dimensional veloc-
ity. Bursting patterns of behavior were detected by reporting
that every time particle velocity in a single dimension was a
set amount λ times higher than velocity in the next highest
dimension. Bursting behavior is demonstrated in Figure 6,
where the velocity of a single particle in a 10-dimensional
problem is shown. On the plot of the multidimensional ve-
locity of the SPSO particle, it can be seen that velocity in a
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Figure 5: Frequency of updates showing burst behavior for values
of λ.

single dimension increases suddenly and dramatically while
remaining relatively level and low in all other dimensions.
This is an example of a velocity burst. While the figure shows
velocity for a single particle on a single run, examination of
velocity plots for hundreds of particles over dozens of runs
confirmed this to be representative of general particle behav-
ior.

Velocity for a PSO-DR particle is also shown in Figure 6,
and demonstrates the absence of bursts. Similarly to the
SPSO plot, examination of a large number of plots confirmed
this to be representative of general behavior for PSO-DR.

Examination of these empirical analyses show that PSO-
DR clearly does not contain bursting behavior on the scale
of SPSO while demonstrating equal or superior performance
on 13 of the 14 benchmark functions, leading to the hypoth-
esis that bursts are not, in fact, integral to the successful op-
eration of particle swarm algorithms. The fact that a very few
bursts do occur with PSO-DR indicates that it is a highly im-
probable feature of DR dynamics.

Analysis performed on statistics of several functions
shows that particle updates involving bursts are far less effec-
tive than more common nonbursting updates. For example,
results showed that for SPSO on f5 with λ = 100, on aver-
age 20.1% of all particle, updates involve an improvement
to the particle’s best found position pi, whereas only 1.8%
of updates involving bursts result in an improvement to pi.
Likewise, on average 0.9% of all particle, updates improve
the best found swarm position g, as opposed to only 0.01%
for bursting particles. Burst frequencies for values of λ from
10 to 150 are shown in Figure 5.

It is also interesting to note that far fewer total updates
result in an improved pi or g for PSO-DR when compared to
SPSO, for example, results showed that 20.1% of all updates
improve pi for SPSO compared with 0.64% for PSO-DR, and
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Figure 6: Representative particle velocities for SPSO and PSO-DR
on 10D Rastrigin.

0.91% improve g for SPSO compared with 0.02% for PSO-
DR on f5 for λ = 100.

6. CONCLUSIONS

Simplification of the standard PSO algorithm is an impor-
tant step toward understanding how and why it is an effec-
tive optimizer. By removing components of the algorithm
and seeing how this affects performance, we are granted in-
sight into what those components contribute to overall par-
ticle and swarm behaviors.

In particular, this paper has proposed a very simple PSO

DR3 : xt+1
id = xtid + φ

(
rid − xtid

)
(13)

which offers competitive performance to standard PSO, but
removes multiplicative randomness, inertia, and the personal
memory term pi from the position update.
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There is still much to be done before questions concern-
ing PSO behavior can be completely answered, and it is ex-
pected that the next decade of PSO research will be focused
on understanding the basic algorithm that powers both the
standard implementation and its variants.

In that light, the PSO-DR variant is important not only
because of its improved performance on several benchmark
functions, but also because its simplified state allows us to ex-
amine what happens to the standard algorithm when pieces
are modified or removed. Based on the results presented
here, it can be argued that large bursts are not generally
beneficial or integral to PSO performance, and may possi-
bly be detrimental. Although the presence of particle out-
liers is demonstrably important for swarm optimization (as
demonstrated in bare bones analysis, [6]), bursts, which are
sequences of extreme particle positions, occurring along an
axis and reaching outside the search space, remain a special
feature of velocity-based swarms. This work, which compares
standard PSO to a burst-free but comparable optimizer sug-
gests that bursts are disadvantageous in general. (However, in
the coincidence that the objective function has a rectangular
symmetry aligned with the axes, then bursting may actually
be fortuitous.)

Further, the replacement of the direct personal influence
operator pi from SPSO with the recombinant term ri derived
from its neighborhood in PSO-DR strengthens the case for
PSO being mostly reliant on social interaction as opposed to
personal experience. This is further supported by the effec-
tiveness of PSO-DR model 3, which lacks a cognitive term
altogether. The social behavior occurring inside of a swarm
is still a wide-open area in the field, and will hopefully con-
stitute a great deal of the future research devoted to the devel-
opment of a better understanding of this deceptively simple
optimizer.

Another property of PSO-DR resides in attractor jiggling
that takes place even at stagnation (no updates to any pi)
since ri is never fixed. This jiggling will work against conver-
gence and could propel the swarm onwards. This, and other
matters concerning the nature of recombination within PSO,
will be the subject of further study.
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