
IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Multiswarms, Exclusion, and Anti-Convergence
in Dynamic Environments
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Abstract—Many real-world problems are dynamic, requiring
an optimization algorithm which is able to continuously track a
changing optimum over time. In this paper, we explore new vari-
ants of particle swarm optimization (PSO) specifically designed
to work well in dynamic environments. The main idea is to split
the population of particles into a set of interacting swarms. These
swarms interact locally by an exclusion parameter and globally
through a new anti-convergence operator. In addition, each swarm
maintains diversity either by using charged or quantum particles.
This paper derives guidelines for setting the involved parameters
and evaluates the multiswarm algorithms on a variety of instances
of the multimodal dynamic moving peaks benchmark. Results
are also compared with other PSO and evolutionary algorithm
approaches from the literature, showing that the new multiswarm
optimizer significantly outperforms previous approaches.

Index Terms—Author, please supply your own keywords or send
a blank e-mail to keywords@ieee.org to receive a list of suggested
keywords.

I. INTRODUCTION

PARTICLE SWARM OPTIMIZATION (PSO) is now estab-
lished as an efficient optimization algorithm for static func-

tions in a variety of contexts [35]. PSO is a population-based
technique, similar in some respects to evolutionary algorithms
(EAs), except that potential solutions (particles) move, rather
than evolve, through the search space. The rules, or particle dy-
namics, which govern this movement, are inspired by models
of swarming and flocking [27]. Each particle has a position and
a velocity, and experiences linear spring-like [9] attractions to-
ward two attractors:

1) the best position attained by that particle so far (particle
attractor);

2) the best of the particle attractors in a certain neighborhood
(neighborhood attractor);

where best is in relation to evaluation of an objective function at
that position. The swarm attractor therefore enables information
sharing between particles, while the particle attractors serve as
individual particle memories.

The optimization process is iterative. In each iteration, the
acceleration vectors of all the particles are calculated based on
the position of the corresponding attractors. Then, this accel-
eration is added to the velocity vector, the updated velocity is
constricted so that the particles progressively slow down, and
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this new velocity is used to move the individual from the cur-
rent to the new position. A more detailed introduction to PSO is
provided in Section II-A.

While most of the optimization problems discussed in the sci-
entific literature are static, many real-world problems are dy-
namic, i.e., they change over time. In such cases, the optimiza-
tion algorithm has to track a moving optimum as closely as pos-
sible, rather than just find a single good solution. It has been ar-
gued [13] that EAs may be a particularly suitable candidate for
this type of problems, and over the past decade, a large number
of EA variants for dynamic optimization problems have been
proposed. For an overview, the reader is referred to [12]–[14],
[25], and [32].

Recently, the application of PSO to dynamic problems has
also been explored [1], [2], [16], [18], [21], [23], [24], [31],
[35], [39]. Similar to EAs, PSO needs to be adapted for optimal
results on dynamic optimization problems. This is due to the
following reasons.

1) Outdated memory: When the problem changes, the infor-
mation stored in the memory, i.e., each individual’s local
best solution and the corresponding fitness, may no longer
be true and may actually be misguiding the search.

2) Diversity loss and linear collapse: If the swarm is con-
verging, the attractors will be close to the optimum posi-
tion and the swarm will be shrinking at a rate determined
by the constriction factor and by the local environment
at the optimum. For functions with spherical symmetric
local neighborhoods, a theoretical analysis and an experi-
mental verification suggest that the rate of shrinkage (and
hence diversity loss) is scale invariant [3], [4], [8]. If the
optimum shifts within the collapsing swarm, then reopti-
mization will be efficient. However, if the optimum shift
is significantly far from the swarm, the low velocities of
the particles will inhibit tracking, and the swarm can even
oscillate about a false attractor and along a line perpen-
dicular to the true optimum (linear collapse) [6].

Various adaptations to PSO have been suggested to tackle the
difficulties mentioned above. Most of them assume that the time
of a change in the environment is known to the algorithm, or can
be detected, e.g., by a reevaluation of the objective function at
one or several of the attractors [16], [23].

The problem of outdated memory is usually solved by ei-
ther simply setting each particle’s memory position to its cur-
rent position (i.e., erasing the memory), or by reevaluating every
memory position and setting it to either the old memory or cur-
rent particle position, whichever is better [16].

The approaches to counterbalance the effect of diversity loss
can be grouped into three categories: The approaches of the first
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category introduce diversity after the problem changed. Hu and
Eberhart [23] list a number of these which all involve random-
ization of the entire, or part of, the swarm. This is either in re-
sponse to function change, or at some predetermined interval.
The problem of approaches in this category is that randomiza-
tion implies loss of information gathered so far, and it seems
difficult to determine the right amount of randomization. Too
much will resemble restart, while too little does not solve the
problem of convergence.

The second category attempts to maintain diversity
throughout the run. For PSO, this may be achieved by in-
tegrating a sort of repulsion. In static environments, Krink et al.
[29] proposed ways to handle collisions of spatially extended
particles to avoid premature convergence. Parsopoulos and
Vrahatis [34] use repulsion to keep particles away from al-
ready detected optima in an attempt to detect new ones. For
dynamic environments, Blackwell and Bentley [5], [6] intro-
duced charged PSO (CPSO), where some mutually repelling
particles orbit a nucleus of neutral particles. This nucleus is,
in fact, a conventional PSO swarm. The picture is reminiscent
of classical pictures of the atom [6], although the orbits are
chaotic rather than elliptical. The idea is that the charged
subswarm maintains population diversity, at least within the
spatial extent of the charged orbits, so that function change can
be quickly (and automatically) registered, and the swarm can
adapt. Meanwhile, the neutral swarm can continue to explore
the neighborhood of the optimum in increasing detail. CPSO
has been applied to a number of unimodal and bimodal test
functions of high change frequency and spatial severity, and
has been shown to work well, outperforming conventional PSO
[1]. In [2], the authors have simplified the idea and replaced
the charged particles by quantum particles that basically move
to random positions around the swarm’s global best. Another
approach to maintain diversity is to replace the usual global
neighborhood by a more local neighborhood. This reduces, at
least temporarily, the pressure to move toward the global best,
and thus allows to sustain diversity for a longer time. Li and
Dam [31] tested this idea with a grid-like neighborhood struc-
ture. A similar approach is adopted by Janson and Middendorf
[24] who use a hierarchical neighborhood structure, which has
been shown to outperform the standard PSO in particular on
unimodal dynamic problems.

In the final category, Blackwell and Branke [2] introduced a
version of a multiswarm PSO, with the aim of maintaining a
multitude of swarms on different peaks. This approach has been
inspired by multipopulation EA approaches like the self-orga-
nizing scouts developed by Branke [13], which have shown to
give excellent results on the tested problems. In the multiswarm
approach, a part of the population clusters around any local op-
timum it may discover, and remains close to this optimum for
further exploration. The remainder of the population continues
to search for new local optima, and the process is repeated if
any more local optima are found. This technique is expected to
work well for a class of dynamic functions consisting of sev-
eral peaks, where the dynamism is expressed by small changes
to the peaks locations, heights, and widths. These have been ar-
gued to be representative of real world problems [11]. To track
the optimum in such an environment, the algorithm has to be

able to follow a moving peak, and to jump to another peak
when the peak heights change in a way that makes a previously
nonoptimal peak the highest peak. In order to allow each sub-
swarm to track its peak, in [2], the multiswarm idea has also
been combined with the quantum particle idea to sustain diver-
sity within a swarm. Another multiswarm approach has recently
been proposed by Parrott and Li [33]. There, the number and
size of swarms is adjusted dynamically by a speciation mech-
anism called clearing [36], originally proposed for finding sev-
eral optima in multimodal landscapes. While it also splits up the
swarm into several subswarms, no additional diversity mecha-
nisms have been included.

In this paper, we elaborate on our previous multiswarm PSO,
adding a new operator (anti-convergence), providing guidelines
for suitable parameter settings, and evaluating the approach on
a variety of problem instances.

The multiswarm idea has also been proposed for purposes
other than tracking dynamic environments. For example, the
nichePSO approach of Brits et al. [15] is aimed at multimodal
functions. It creates a two particle subswarm from a particle
and its nearest spatial neighbor, if the variance in that parti-
cles fitness is less than a threshold. Subswarms may merge,
and they also absorb particles from the main swarm. Although
nichePSO was able to optimize successfully some static multi-
modal benchmark functions, it is not adaptable to the dynamic
problem in an obvious way. This is because the algorithm, as
the authors point out, depends on a very uniform distribution
of particles in the search space, and on a training phase. The
already mentioned multiswarm approach with clearing has also
been used in [30] for detecting several optima in multimodal en-
vironments. In [38], different swarms are used to optimize dif-
ferent parts of a solution cooperatively. A two swarm approach
for min–max optimization was proposed in [37]. Kennedy [26]
suggested to cluster particles in each iteration into subswarms,
and have them determine their global best separately. Finally,
multiswarm variants have also been suggested in a nonoptimiza-
tion context [7].

The paper is structured as follows. Section II provides a brief
introduction on PSO, and then describes in detail the proposed
multiswarm PSO. Also, in that section, some basic guidelines on
parameter settings are suggested. Then, in Section III, the mul-
tiswarm approach is empirically evaluated on the moving peaks
benchmark and compared with alternative approaches from the
literature. This paper concludes with a summary and some ideas
for future work.

II. PSO AND MULTISWARMS

In this section, we will first provide a more formal introduc-
tion to PSO, then discuss some general aspects of multiswarms,
and finally describe our multiswarm algorithm. For a more ex-
tensive treatment of PSO techniques, the reader is referred to
[17], [19], and [20].

A. Particle Swarm Optimization (PSO)

As has already been explained in the introduction, particles
move through the search space driven by attraction to their per-
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sonal best found solution so far, and the best found solution in
the neighborhood.

A particle is defined by its position , the position of its
personal best solution found so far, , and its velocity . Fur-
thermore, each particle knows the best solution found so far by
any of its “neighbors.” Different particle topologies are explored
in [24] and [28], but the standard neighborhood is global (gbest),
i.e., all particles know the position of the globally best solution
found so far . In the beginning, particle positions and veloci-
ties are generated randomly. The algorithm then proceeds itera-
tively, updating first all velocities, and then all particle positions
as follows:

(1)

(2)

The constriction factor acts like friction, slowing the
particles, so that finer exploration is achieved. and control
the relative attraction to the global best and personal best found
solutions, respectively. Finally, and are vectors of random
variables drawn with uniform probability from [0, 1].

The overall algorithm is summarized as Algorithm 1 (unless
stated otherwise, throughout this paper, we assume maximiza-
tion problems without loss of generality).

Algorithm 1 Standard PSO Algorithm

FOR EACH particle i

Randomly initialize ~vi, ~xi = ~pi

Evaluate f(~pi)

~pg := argmaxff(~pi)g

REPEAT

FOR EACH particle i

Update particle position ~xi

according to Eqs. (1) and (2)

Evaluate f(~xi)

//Update personal best

IF f(~xi) > f(~pi) THEN

~pi := ~xi

//Update global best

IF f(~xi) > f(~pg) THEN

~pg := argmaxff(~pi)g

UNTIL termination criterion reached

B. Multiswarms—General Considerations

The fundamental idea of the proposed approach is to divide
up the swarm into a number of subswarms, with the aim to po-
sition each of those swarms on different, promising peaks of
the landscape. However, simply breaking up the neighborhoods
and dividing up the global swarm into a number of independent
swarms is unlikely to be effective since the swarms would not
interact (the dynamics governing the position and velocity up-
dates of a particle in a particular swarm are specified by param-
eters belonging to that swarm only).

In this paper, two forms of swarm interaction are applied: ex-
clusion and anti-convergence. Exclusion is a local interaction
between colliding swarms, preventing swarms from settling on

the same peak. Anti-convergence is an information sharing in-
teraction among all swarms in the multiswarm algorithm, with
the aim of allowing new peaks to be detected. Additionally, as
a diversity preserving technique, each swarm has some charged
or quantum particles. While the authors have used exclusion and
quantum swarms before [2], anti-convergence is a completely
new operator. We here motivate each development in turn.

1) Exclusion: If a swarm is divided into a number of
subswarms, it may happen that particles from different swarms
cluster around a single peak. This is undesirable since the
motivation behind a multiswarm approach is to position dif-
ferent swarms on different peaks. Should one of the watched
peaks become optimal, a swarm will already be present to take
advantage. We therefore require diversity among the swarms.
This requirement is called swarm diversity, as opposed to par-
ticle diversity which refers to the diversity of particles within
a swarm [3]. Swarm diversity might arise from repulsions
between particles from different swarms, but this would not
prevent equilibriums where the attractions toward the peak are
in balance with the repulsions between competing swarms. No
single swarm is able to move closer to the peak and optimiza-
tion would cease.

In order to prevent this, we use a simple competition among
swarms that are close to each other. The winner is the swarm
with the best function value at its swarm attractor. The loser is
expelled and reinitialized in the search space; the winner re-
mains. Swarms can be considered to be close to each other
when their swarm attractors (best solutions found so far by each
swarm) are within an exclusion radius . Exclusion thus con-
stitutes local interaction among colliding swarms.

2) Anti-Convergence: As each swarm converges on a peak,
neutral particles collapse inwards in a shrinking nucleus, while
charged particles orbit chaotically around the peak [4]. The spa-
tial extent of the neutral subswarm is therefore a suitable cri-
terion for swarm convergence; swarm convergence is thus de-
fined as the case of the neutral swarm size being less than a
convergence radius , and multiswarm convergence occurs
when all swarms have converged. But if the number of swarms
is less than the number of peaks in the fitness landscape, and
all swarms have converged (to different peaks, because exclu-
sion is in force), the system will have lost its peak-detection ca-
pability. If one of the unwatched peaks becomes promoted to
optimal due to an increase in peak height, or a completely new
peak appears, the converged swarms may not be able to respond.
Therefore, we advocate here the use of an anti-convergence op-
erator. Whenever all swarms have converged, anti-convergence
expels the worst swarm from its peak and reinitializes it in the
search space. As a result, there is at least one swarm watching
out for new peaks. Anti-convergence is a global interaction be-
cause it is assumed that all swarms are aware of each other’s
convergence status; it is information sharing between swarms.
By contrast, the updating of the swarm attractor is information
sharing between particles in the same swarm.

3) Charged and Quantum Swarms: In order to allow a
swarm to follow a moving peak, particle diversity within a
swarm is necessary. In CPSO, particle diversity is maintained
by an interparticle Coulomb repulsion between charged par-
ticles. A measure of this diversity is the spatial size of the
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charged swarm. However, the charged swarm size fluctuates
greatly due to the chaotic nature of the orbits [8]. This might
have drawbacks in multi-CPSO, where it is desired to find
swarms on and around localized optima. Furthermore, CPSO
suffers from quadratic complexity, arising from the Coulomb
repulsions which are calculated between all pairs of particles
in the charged subswarm.

It is probable that the success of CPSO over PSO in the dy-
namic context is only due to the increased diversity around the
contracting PSO swarm, and that the exact dynamics are not
important. In which case, simple randomization of the charged
particles in a region surrounding the neutral swarm may be suffi-
cient, superseding the need for expensive computations,
where is the number or particles. This is the basis of the
quantum swarm first proposed in [2].

Quantum swarm optimization (QSO) builds on the atomic
picture of CPSO, and uses a quantum analogy for the dynamics
of the charged particles. In the quantum model of the atom, the
orbiting electrons are replaced by a quantum cloud. This cloud is
actually a probability distribution governing where the electron
will be found upon measurement. The electron does not follow
a classical trajectory in between measurements. The probability
distribution depends on the energy (and various other quantum
numbers) of the electron. For example, electron positions in the
lowest energy state of the hydrogen atom are distributed ac-
cording to , where is the distance
from the nucleus, and the probability that the electron
is observed at a location with distance [22]. By stretching the
quantum analogy still further, a measurement corresponds to a
function evaluation. At this point the charged particles are ran-
domized within a ball of radius centered on the swarm
attractor. This provides a very simple update rule and corre-
sponds to a uniform (and very unphysical) probability distri-
bution. The velocity of the charged particle is irrelevant (it is
indeterminate in the quantum picture) and the charged parti-
cles are not repelled from other charged particles or attracted to
any attractor. However, any good location that they do find by
virtue of their random positioning around the swarm attractor
may still be useful to the neutral swarm due to information
sharing. The multi-QSO proposed in this paper is an assembly
of QSO swarms. The only interaction between these swarms oc-
curs when swarms collide and the exclusion principle is applied,
or due to the anti-convergence mechanism described above.

C. Proposed Multiswarm Algorithm

Based on the considerations above, the proposed multiswarm
algorithm works as follows. After initialization, the algorithm
iterates through a main loop with five stages: test for conver-
gence, test for exclusion, test for function change, particle up-
date, and attractor update. Test for convergence checks whether
all swarms have converged and if so, marks the worst swarm
for randomization (set init-bit to TRUE). Similarly, exclusion
tests all pairs of swarms whether they are too close and if so,
marks the inferior swarm for randomization. If a change in the
environment is detected, all particle bests are reevaluated and
any randomization is canceled. Then, depending on whether the
swarm is to be randomized or not, the particles are reinitialized
or simply updated. These stages are described in Algorithm 2.

Note that each particle gains an additional index indicating
the swarm it belongs to, i.e., particle is particle of swarm .
Particle update rules depend on whether the particle is of neutral,
charged, or quantum type and are defined as follows.

1) For neutral particles

(3)

(4)

2) For quantum particles

(5)

3) For charged particles

(6)

(7)

(8)

(9)

(10)

Apart from the variables already defined in Section II-A, the
following notation has been used: neutral and quantum particles
have charge and charged particles have the same charge

. The interactions between particles of the same
swarm are parameterized by the usual PSO parameters (neu-
tral and charged particles), (charged particles), and the radius

of the -dimensional ball centered on (quantum
particles). The Coulomb repulsion, unlike earlier CPSO imple-
mentations ([1]–[8]), has an unprotected denominator. In prin-
ciple, very large accelerations can occur if two charged particles
are very close. In order to prevent singularities, is clamped
to a very large number, , cf. (10) [in practice, the Java con-
stant 10 is used), and is
clamped to the dynamic range (cf. (7)]. Charged particle ve-
locity clamping tames the large fluctuations that can occur with
Coulomb forces [8]. Choosing for ensures that any
displaced charged particle will not stray too far from the search
space . Note that neutral particle clamping is not necessary
since constriction ensures convergence [17].

The local swarm interaction, exclusion, is parameterized by
the exclusion radius . When the swarm attractors of two
swarms (the swarm attractors of converging swarms are invari-
ably very close to the swarm center of mass [8]) are within ,
we assume that the swarms are overlapping and competing for
the same peak. The response to this condition is to reinitialize
the worse performing swarm (as determined by ) at that
time in . Exclusion can be turned off by setting to zero.

A swarm has converged if its neutral size is less than
a convergence parameter . The swarm size is defined as
the largest component separation between any two particles,
stated mathematically as ,
where is the unit vector in direction . This diversity mea-
sure has been used to analyze the convergence of the neutral
swarm around a single peak [8]. A scaling law for diversity loss
as a function of iteration time , , , constants,

, has been motivated by theoretical and empirical studies.
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If all swarms have converged, the worst swarm (with respect to
) is reinitialized in . Note that anti-convergence can

be turned off by setting to zero.
Multiswarms are composed of either neutral and charged par-

ticles or neutral and quantum particles. A convenient representa-
tion of the multiswarm configuration is or

, where , and are the numbers of neutral, charged
and quantum particles in each swarm, and is the total number
of swarms in the multiswarm. and
also evaluate to the total number of particles. In the following
sections of this paper, where an actual configuration is specified,
e.g., , the second group of particles is either charged or
quantum; charged in the case of multiswarm optimization with
CPSO swarms (mCPSO), or quantum for multi-QSO (mQSO).

In summary, the multi-swarm is a colony of interacting
swarms. Neutral particles in any swarm always follow a pure
PSO position and velocity update rule. Charged classical parti-
cles obey neutral dynamics, but are also mutually repelled from
other charged particles in their own swarm. A quantum par-
ticle, on the other hand, does not follow a classical rule; simply,
upon measurement (a function evaluation), it is to be found
in . Particles within a swarm share information via
the updated memory . Swarms interact both locally (exclu-
sion) and globally (anti-convergence). A number of parameters
have been introduced to specify these interactions, namely ,

, and either or depending on whether charged
swarms or quantum swarms are used. The next section presents
some analytical arguments for bounds on these parameters.

Algorithm 2 Multiswarm Algorithm

//Initialization

FOR EACH particle ni

Randomly initialize ~vni, ~xni = ~pni

Evaluate f(~pni)

FOR EACH swarm n

~png := argmaxff(~pni)g

//Marker for randomization

init[n] := FALSE

REPEAT

//Anti-Convergence

IF all swarms have converged THEN

//Remember to randomize worst swarm

init[worst swarm] := TRUE

//Exclusion.

FOR EACH PAIR of swarms n, m

IF swarm attractor png is within rexcl

of pmg THEN

IF f(~png) � f(~pmg) THEN

init[n] := TRUE

ELSE

init[m] := TRUE

FOR EACH swarm n

//Test for Change

Evaluate f(~png).

IF new value is different from last

iteration THEN

Reevaluate each particle attractor.

Update swarm attractor.

//Cancel randomization

init[n] := FALSE

FOR EACH particle i of swarm n

IF (init[n] = TRUE) THEN

randomize particle

ELSE

//Update Particle

Apply equations (3)-(9) depending

on particle type.

//Update Attractor

Evaluate f(~xni).

IF f(~xni) > f(~pni) THEN

~pni := ~xni.

IF f(~xni) > f(~png) THEN

~png := ~xni

//Randomization complete

init[n] := FALSE

UNTIL number of function evaluations

performed > max

D. Reflections on Parameter Settings

1) Particle Diversity: Assume a swarm has been sitting on
a peak for a while and the neutral nucleus has shrunk to a size
much smaller than the peak shift distance . When the peak does
shift, a charged or quantum particle is more likely to be close to
the new optimum if is commensurate with the average charged
or quantum swarm size . This size is a measure of the
average particle diversity. If is much smaller than the average
particle diversity, then it would be unlikely to find a charged or
quantum particle close to the shifted peak. Conversely, if is
much larger than the average particle diversity, the swarm is not
diverse enough to rapidly cope with the change [8]. We there-
fore guess that the optimal average charged or quantum particle
displacement from the swarm center (assumed to be virtually
coincident with ) is , leading to .

Predictions for the optimal values of the two parameters
which determine the diversities of the charged and quantum
swarms follow from this condition. The relationship between

and follows an empirical law , where
and are constant for a particular configuration .

This yields

(11)

This empirical law is derived from a series of experiments
on the static sphere function, dynamic range ,
with charged swarms of various configurations. [Note that these
experiments differ slightly from earlier work on charged swarm
size [8], since the charged particles interact through the clamped
Coulomb repulsion and velocity instead of reduced repulsion
when particles are within a distance of a core radius, cf. (10) and
(7).] The equations of the best fit power law for the dependence
of on are reported in Table I.

A quantum particle will be found, on average, at a displace-
ment of from the swarm center, so and
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TABLE I
CHARGED SWARM SIZE DEPENDING ON Q AND SWARM CONFIGURATION

this leads to a very simple prediction for the quantum diversity
parameter

(12)

2) Multiswarm Cardinality, : The motivation for the in-
troduction of multiswarms is to let each swarm sit on a different
peak, so that if peak heights change and a previously inferior
peak becomes optimal, a swarm is already there. Ideally, all
peaks of the landscape would be covered by a swarm; we ex-
pect therefore that the multiswarm will perform well when the
number of swarms is equal to the number of (significant) peaks
in the landscape, i.e.,

(13)

When , there will be a number of swarms that will al-
ways be reinitialized as they become excluded from an occupied
peak. These swarms cannot contribute much to the optimization,
but they consume many function evaluations at the expense of
swarms sitting on the peaks, doing the actual work. Thus, we ex-
pect performance to deteriorate. On the other hand, if ,
there are more peaks than swarms, and anti-convergence will
mitigate against performance deterioration due to low swarm
diversity.

3) Exclusion: Since the idea behind exclusion is to ensure
that only one swarm sits on a peak, the optimal value for
can be estimated by considering the average diameter of the
peak basin of attraction. Assuming that all peaks are evenly
distributed in , the linear diameter of the basin of attraction
of any peak, can be used to predict an optimal value for

:

(14)

The basin diameters themselves can be estimated by fitting
peaks evenly into to give, on average, .

4) Anti-Convergence: In general, we expect anti-conver-
gence (or some other mechanism to keep at least one swarm
patrolling) to be beneficial when . If is too large,
it is likely that the same swarm will be repeatedly reinitialized
because it will never have the chance to converge. This might
degrade performance because the poorer swarms will never
be reinitialized, even when their peaks are comparably tiny.
Alternatively, if is too small, the multiswarm will wait
a long time before reinitialization, which again will degrade
performance because one of the many unwatched peaks might

have become optimal during this wait. On the whole, if
is comparable to , we would expect since a
converging swarm will be close to the peak center, inside the
basin of attraction.

A lower bound for can be estimated by using the em-
pirical result for the size of the contracting neutral swarm as a
function of iteration , , for constants
and (cf. [8, eq. (22)]). This scaling law is postulated
to hold good for a neutral swarm converging toward a locally
spherical symmetric optimum, which should hold if a neutral
swarm is converging on a peak. In the following, we assume
(optimistically, since we want to derive a lower bound) that the
swarm immediately locates the new optimum after a change,
and furthermore, that the neutral swarm size shortly after a peak
shift is close to (i.e., the cloud of neutral particles spans
the region between the old and new optimum location). That
means, after a change, the swarm starts to contract around the
new optimum, starting from . The number of itera-
tions the PSO has to converge on the new peak can be calculated
as ,
where is the number of function evaluations between shifts,

is the number of swarms, and is the number
of particles in each swarm. This estimation assumes that there
will be function evaluations during the particle up-
dates in a single iteration, followed by function evaluations
at the test for change stage. Furthermore, right after a change,

additional evaluations are required to reeval-
uate all particles. Then, the smallest a converging neutral swarm
can shrink to is , which leads to the following pre-
diction for the upper and lower limits of

(15)

III. EXPERIMENTS

A. Experimental Framework

For performance evaluation, we used the publicly available
moving peaks benchmark (MPB) [10]. It consists of a number
of peaks, of varying heights and widths, moving by a fixed
shift length in random directions. Unless stated otherwise,
the parameters have been set as follows: the search space has
five dimensions , there are peaks, the
peak heights vary randomly in the interval [30, 70], and the
peak width parameters vary randomly within [1, 12]. The peaks
change position every evaluations by a distance of

in a random direction, and their movements are uncorre-
lated (the MPB coefficient ). These parameter settings are
summarized in Table II. They correspond to [10, Scenario 2] and
have been chosen to facilitate comparisons with the self-orga-
nizing-scouts approach [14], a state-of-the-art EA for dynamic
optimization problems. The termination condition for each ex-
periment is 100 peak changes, corresponding to 500 000 func-
tion evaluations (or 413 900 function evaluations for the com-
parisons with Jansen and Middendorf [24]).

Scenario 2 actually specifies a family of benchmark func-
tions, since the initial location, initial height and width of the
peaks, and their subsequent development is determined by a
pseudorandom number generator. All our results are based on
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TABLE II
STANDARD SETTINGS FOR THE MOVING PEAKS BENCHMARK

averages over 50 runs, where each run uses a different random
number seed for the optimization algorithm, as well as the MPB.
The primary performance measure is the offline error [14] which
is the average over, at every point in time, the error of the best
solution found since the last change of the environment. This
measure is always greater or equal to zero and would be zero
for perfect tracking.

The dynamics of the multiswarm models discussed is gov-
erned by three parameters , and , or , respec-
tively. One of the aims of the series of experiments is to investi-
gate the sensitivity of the algorithm to these parameter settings.
Another aim is to investigate the effect of different multiswarm
configurations and . In order to com-
pare performance to the results from evolutionary techniques re-
ported in [11], unless stated otherwise, the total population size
(total number of particles), was fixed at 100 particles. The
standard PSO parameters and
have been well tested by many authors and have been shown
to lead to convergence for noninteracting particles [17], and for
interacting particles close to symmetric optima [8]. These stan-
dard PSO values were used for all experiments. The common
“gbest” particle connectivity was also used, corresponding to
a single neighborhood with a single swarm attractor. Initializa-
tion of the swarms involves placing the particles randomly in

with random velocities, also constrained to lie in . Be-
cause we expect anti-convergence to have an effect only when
there are more peaks than swarms, anti-convergence has been
switched off unless stated otherwise.

B. Effect of Varying Multiswarm Configuration

The first set of experiments examines the effect of the multi-
swarm configuration on performance with the MPB and with the
standard settings as mentioned above. Some of the experiments
are similar to those reported in our earlier EvoSTOC paper [2],
but differ in that we use the new clamped, intraswarm Coulomb
repulsion and multiswarm parameter settings corresponding to
our considerations in Section II-D. Besides, we have slightly
modified the structure of the algorithm such that a swarm can
be randomized at most once per iteration.

Many different configurations of 100 particles are possible.
The number of swarms, , can range from 1 (where the
multiswarms reduce to single swarm PSO, CPSO, and QSO) to
100 (where the concept of a swarm is lost, since a lone particle

TABLE III
OFFLINE ERROR � STANDARD ERROR FOR DIFFERENT CONFIGURATIONS

cannot exchange information through the updating of ).
As we have argued, optimal configurations are likely to lie in
between these extremes, with being close to the number of
peaks. As far as possible, symmetrical configurations (equal
numbers of neutral and charged/quantum particles in each
swarm) of 2–50 swarms were tested, along with the extremes.
However, there are no configurations which have the same
number of particles in each swarm for in the range 11–19.
In order to include a multiswarm in this range, the
configuration has been used, despite the fact that the total
number of particles of that configuration is 98.

The empirical law for the charged swarm size for a
swarm is (see Table I). Demanding that

implies [from (11)] . The same
demand for the quantum swarm leads to a parameter choice

(12), and (14) suggests since
. Anti-convergence has

been switched off for all runs. As will be shown later, it might
have improved the results for , but would not fully com-
pensate for the effect of an insufficient number of swarms.

The results of the experiments are reported in three groups:
, the extreme cases and , and

some experiments where swarm interaction has been switched
off. At the end of the section, we also compare convergence
curves for some of the configurations.

1) Multiswarms: The effect of varying on the
offline error can be seen in Table III. A visualization is provided
also in Fig. 1.

The swarm diversity (as opposed to the particle diversity
within a swarm) is increased by increasing the number of
swarms. The results show that performance improves with in-
creasing swarm diversity, reaching an optimum at ten swarms.
This confirms our expectation of being the optimal
setting for parameter . Increasing the number of swarms
beyond ten reduces performance for two reasons: First, the
additional swarms inevitably climb peaks that are already
occupied, only to be randomized by exclusion. Thus, they
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Fig. 1. Influence of number of swarms on offline error. For ten swarms,
configuration 10(5 + 5) is plotted.

do not contribute to the optimization. Second, since we keep
the total population size fixed, the swarms have less and less
particles. In particular in the CPSO configuration, a 50-swarm,
consisting of 50 of the smallest possible swarms (i.e., two
particles) performs rather badly because there is no diversity
in the charged swarm—a charged particle can only be repelled
from other charged particles in the same swarm, and there are
no other charged particles in this swarm. This is in contrast
to the multi-QSO, where particle diversity is still
possible and the result is markedly better than the equivalent
CPSO configuration. Notice how the quantum interaction is
consistently and substantially better than the charged interac-
tion, and this is independent of the configuration.

It is also interesting to compare performance among the
multiswarms. The interacting PSO’s configura-

tion already performs much better than a single swarm. How-
ever, when comparing the results with the configu-
rations, it is evident that diversity within a swarm is also impor-
tant. A multiswarm where each swarm consists of only charged
particles performs better than purely neutral swarms, and using
only quantum swarms is the best of the pure configurations. The
combination of neutral and charged or quantum particles, how-
ever, performs best (see configurations), because the
charged or quantum particles help to track changes, but only
the neutral particles can converge and rapidly improve a good
solution.

2) Extreme Cases: Table IV shows the results for the ex-
treme configurations with and . Note that the

configuration corresponds to the standard PSO, and
the and are just single swarm CPSO and
QSO, respectively. The poor offline errors for the single swarms
prove the efficacy of the multiswarm approach in this environ-
ment. There is no significant difference between the 100 0 and
50 50 configurations. This is surprising since the charged and
quantum swarms have greater particle diversity and it would be
expected that this would lead to better peak tracking, and hence
better overall optimization. Also, charged or quantum particles
have shown to be beneficial in the multiswarm configurations.
However, a single large population has some inherent diver-
sity anyway, and a shift severity of for MPB is rather

TABLE IV
OFFLINE ERROR� STANDARD ERROR FOR EXTREME CONFIGURATIONS

mild. Overall, it seems that further increasing particle diversity
in single swarms becomes important only for severely dynamic
mono-modal environments [1]. The single swarms rapidly con-
verge to a single peak after initialization, and there is not enough
diversity at these parameter settings for the swarm to move away
from this peak and search for other, possibly better, peaks. But
on the other hand, diversity of even the neutral swarms seems
sufficient to track the small movements of that peak. Hence, all
single swarms are essentially equivalent. At , the con-
cept of a swarm is lost since there can be no inter swarm inter-
action and information sharing. A single particle only has the
memory of its best position visited in the past. Apart from the

QSO result, it is apparent that a single swarm, with
local information exchange through ’s is preferable to 100
particles that can share information only through exclusion. This
is perhaps because information exchange is guaranteed with the
PSO and CPSO mechanism which assumes that all particles
in a swarm are able to update their knowledge of instanta-
neously. Conversely, information exchange through exclusion is
local and can only happen when two swarms collide. The small
discrepancy between PSO and CPSO is
surely due to clamping. The interactions are identical because a
lone charged particle experiences no Coulomb repulsion and so
is subject to neutral particle dynamics.

The performance of the multi-QSO is remark-
able given the simplicity of the model. These single quantum
particles are each repositioned randomly in a hyper sphere of
radius 1.0 around the best position they have found, and interact
through exclusion. Once more, the poor optimization potential
of single charged particle swarms CPSO is evident.

3) Many-Swarms: We call a multiswarm with
(i.e., interaction switched off) a “many-swarm.” A many-swarm
configuration is denoted by . Looking at Table V
and comparing the data with the corresponding entries from
Table III, it becomes evident that exclusion is very important—it
is the pressure that prevents two or more swarms optimizing the
same peak, and hence promotes swarm diversity. Notice that ten
noninteracting swarms is still better than one big one (cf. the

and results). Since the many swarms are
equivalent to a single swarm with different information sharing
topologies, these results also illustrate the drawbacks of a single
swarm with global neighborhood topology, presumably due to
its diversity quenching effect.

4) Convergence: The convergence of the offline error over
time is compared in Fig. 2 for standard PSO , many-
swarm PSO , multiswarm PSO with only neutral
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TABLE V
OFFLINE ERROR � STANDARD ERROR WHEN EXCLUSION OPERATOR

IS SWITCHED OFF

Fig. 2. Convergence of offline error over time, for different configurations.

particles , and mQSO . As can be seen,
all approaches converge very quickly (the randomly generated
initial population has an offline error of approximately 168).
However, the standard PSO is soon trapped on a peak and the
offline error increases again as another peak becomes optimal.
The multiswarm suffers a similar fate, but performs better be-
cause it usually has swarms sitting on more than one peak. The
multiswarms clearly do not suffer from that problem due to the
exclusion parameter that prevents several swarms from sitting
on a single peak. Finally, the offline error is further reduced by
replacing some neutral particles with quantum particles.

C. Effect of Varying the Shift Severity

These experiments compare the different approaches with ten
swarms, multi-PSO, multi-CPSO,

multi-QSO, and the many-swarm on environ-
ments of increasing shift severity. Parameter settings are stan-
dard as above. According to our considerations in Section II-D,
we vary the diversity parameter settings depending on the shift
severity , and .

The results are shown in Table VI. Interestingly, in the static
environment , multi-PSO, multi-CPSO, and multi-QSO
all perform equally well, which indicates that the diversity
preserving techniques are not harmful in a static environment.
Naturally, overall performance degrades with increasing shift
length, as the peaks are more and more difficult to track. As
predicted, for , the increased diversities of the CPSO
and QSO swarms enable better tracking of a peak as the shift
severity worsens. Results are very consistent, with multi-QSO
performing best, followed by multi-CPSO, and finally, the
multi-PSO with only neutral particles. The many-swarm PSO
without exclusion performs significantly worse than all others,
which stresses again the importance of the exclusion operator.

TABLE VI
OFFLINE ERROR � STANDARD ERROR FOR VARYING SHIFT SEVERITY

TABLE VII
OFFLINE ERROR � STANDARD ERROR DEPENDING ON

PARAMETERS Q AND r

D. Sensitivity With Respect to Within-Swarm Diversity
Parameters and

Table VII shows the impact of the parameters and on
the performance of multi-CPSO and multi-QSO, respectively.
Standard settings were used for all other parameters. Configu-
ration was and .

For , charged particles behave just like neutral parti-
cles, and the result is just the same as if a standard multi-PSO
would have been used. For QSO, on the other hand, setting

renders the quantum particles useless, and perfor-
mance is rather bad. The best performing parameter settings for
MQSO are and just as predicted. For
mCPSO, and perform best (difference is
not significant). In any case, it can be seen that the performance
is not very sensitive to the examined parameters. Even selecting
a value 1/10 or ten times its optimal setting performs better than
not using the diversity mechanisms.

E. Effect of Varying the Exclusion Parameter

The effect of varying the exclusion radius is summa-
rized in Table VIII and visualized in Fig. 3. As with the other
parameters, the performance of our multiswarm PSO is not very
sensitive to . The optimal setting of 30.0 is slightly smaller
than the 31.5 suggested by (14), but good results are achieved
for . Overall, the effect of setting a little
too large seems to have a more severe impact than setting
a little too small, thus one should probably always stay on the
safe side and below the setting suggested by (14).
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TABLE VIII
INFLUENCE OF r ON PERFORMANCE OF 10(5 + 5 ) mCPSO

AND 10(5 + 5 ) mQSO. RESULTS REPORT ON

OFFLINE ERROR � STANDARD ERROR

Fig. 3. Influence of exclusion on offline error.

F. Effect of Varying Anti-Convergence Parameter

The last parameter introduced by our approach is , de-
termining when anti-convergences is triggered. Since exclusion
is predicted to be advantageous only when the number of peaks
is larger than the number of swarms , this series of ex-
periments was run with and .

Note that with a different number of peaks, our considerations
in Section II-D suggest a modification of the exclusion radius
according to (14), we therefore select .

With , based on the con-
siderations in Section II-D, we would expect that setting
below 0.024 will have no effect since a neutral swarm cannot
shrink below this size, so the criterion for anti-convergence is
never attained. Accordingly, (15) suggests

.
The empirical results in Table IX clearly show that the lower

bound is not tight, as no change in performance can be ob-
served for , some five times larger than predicted.
We assume that this is because the swarm does not immedi-
ately find the new optimum, and thus overestimates the
number of iterations for converging. Also, the upper bound of
(15), seems low, since there is no signif-
icant difference in performance for . Nevertheless,

TABLE IX
INFLUENCE OF r ON PERFORMANCE OF 10(5 + 5 )-CPSO

AND 10(5 + 5 )-QSO. RESULTS REPORT ON

OFFLINE ERROR � STANDARD ERROR

TABLE X
COMPARISON OF SINGLE SWARM OPTIMIZATION OF A SINGLE MOVING PEAK.

RESULTS REPORT ON OFFLINE ERROR � STANDARD ERROR

the range specified by (15) is a good guide, and as it seems, set-
ting to the upper limit works well in practice in our
cases.

The best results are at and ,
with offline errors of 2.60 0.06 and 2.50 0.06 for mCPSO
and mQSO, respectively. The importance of anti-convergence
is illustrated by the fact that the result at is signifi-
cantly worse than the optimal results with anti-convergence.

G. Experiments on a Single Peak

To isolate the particle diversity features of charged particles
and quantum particles, and to demonstrate their benefit even
in simple dynamic environments, this section shows some re-
sults of experiments with a single swarm on a single moving
peak, shift severity and a change every 5000 evalua-
tions. The results are summarized in Table X. Clearly, CPSO
and QSO in their default configurations outperform
the standard PSO without particle diversity feature. As in pre-
vious tests, QSO outperforms CPSO. If all particles are charged,
performance is significantly worse than the neutral swarm. It
seems that the purely charged swarm has a problem with con-
vergence, and the peak shifts are too small to outweigh this dis-
advantage with the benefit of increased particle diversity. On the
other hand, a pure quantum swarm, being basically a local opti-
mizer, performs very well on the single peak environment.
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TABLE XI
ABILITY OF A 10(5 + 5) MULTISWARM TO OPTIMIZE ENVIRONMENTS WITH

VARYING NUMBERS OF PEAKS. THE TABLE SHOWS OFFLINE ERROR �

STANDARD ERROR BOTH WITH AND WITHOUT ANTI-CONVERGENCE

H. Effect of Varying the Number of Peaks

These experiments investigate how our approach scales with
the number of peaks. Also, they validate the intuitive idea that
anti-convergence is relevant only when there are more peaks
than swarms. The number of peaks is varied between 1 and 200,
and tests are performed with and without anti-convergence for
the configuration. and are set to standard
values, is determined by (14), and is set to for
runs with anti-convergence.

As can be seen in Table XI, increasing the number of peaks
has only a relatively small impact on the offline error. Note
that when the number of peaks is increased, two aspects of
the problem change: the problem becomes harder, because
there are more local optima and it is increasingly difficult to
watch over so many peaks. On the other hand, the standard
error even of random solutions is reduced, because the MPB
fitness is the maximum over all the peaks, a value which
increases monotonically with an increasing number of peaks.
The multiswarm approach seems to be able to cope well with
environments consisting of a large number of peaks. However,
decreasing the number of peaks significantly below the number
of swarms seems to cause the offline error to increase, compare
for example, the 4.93 or 5.07 performance on the single peak
with configuration to the offline error of 0.73 or
0.47 achieved with configuration (Table X). The
reason is that there are always a number of swarms that cannot
converge on a peak due to exclusion, thus they are basically
useless, while using up precious function evaluations.

The multiswarms perform best when the number of peaks
is equal or slightly smaller than the number of swarms, both
with and without anti-convergence. This is in line with the in-
tuition of associating a swarm with each peak. When ,
because there are always swarms reinitialized due to exclusion,
we would expect anti-convergence to have little or no effect and

TABLE XII
EXPERIMENT WITH A TEN-DIMENSIONAL MPB. THE TABLE REPORTS

OFFLINE ERROR � STANDARD ERROR FOR DEFAULT PARAMETER

SETTINGS (r = r = 39:7, r = s = 1:0, Q = 0:071,
M(N +N) = 10(5 + 5)) AND DEVIATIONS THEREOF

this is evident in the results. Anti-convergence slightly worsens
optimization at because fine-tuning of convergence is
not required. However, as the modality of the environment in-
creases, anti-convergence offers an increasingly significant ad-
vantage. At , the offline error of mQSO with anti-con-
vergence is 41% smaller than without. mQSO is consistently
better than mCPSO independent of anti-convergence and for all

.

I. Effect of Varying the Dimensionality

This section shall demonstrate that our general guidelines for
setting parameters are also applicable for higher dimensions.
For a MPB with standard settings but with 10 instead of 5 di-
mensions, our guidelines suggest the following parameter set-
tings: , , ,

. Table XII compares the resulting
offline error with the offline error when slightly different pa-
rameter settings would have been chosen ( 20%). As can be
seen, the performance is very robust with respect to parameter
settings, all results range between 4.17 and 4.70 for mQSO, and
4.40 and 4.86 for mCPSO. The default parameter settings are
among the best, with 4.25 for mQSO and 4.49 for mCPSO, and
the difference to the best found parameter settings is not statis-
tically significant. These results confirm the general robustness
of the approach, and show that our guidelines for parameter set-
tings are appropriate also for higher dimensional problems.

J. Comparisons With Other Approaches

In the above, we have already compared the multiswarm ap-
proach with the standard PSO, and with the use of many-swarm
neighborhood structure. In this section, the proposed multi-
swarm QSO is compared with some other approaches from the
literature.
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TABLE XIII
PERFORMANCE OF STANDARD PSO WITH RE-INITIALIZATION OF A

FRACTION � OF THE POPULATION, DEPENDING ON SHIFT SEVERITY s

1) Comparison With Partial Reinitialization: One straight-
forward approach to make PSO more suitable for dynamic en-
vironments is to randomize a certain number of particles after
a change [23]. In the tests reported below, we use this mech-
anism in combination with reevaluating each particle attractor
after a change, just as we did for our multiswarm approaches in
order to prevent outdated memory information misguiding the
search. In [23], Hu and Eberhart use a population size of 30,
and because we wanted to keep as many parameters as possible
equal, we tested population sizes of 30 and 100, randomizing

of the particles after a change. As
test scenarios, we looked at MPB with different change sever-
ities and different numbers of peaks

.
Table XIII summarizes the results on different change severi-

ties, with all other settings corresponding to our default settings.
For comparison, the result of the QSO are also in-
cluded. As can be seen, the population size seems to have only
a marginal effect. However, randomizing a fraction of the parti-
cles can help significantly, as it reintroduces diversity and avoids
getting stuck on a peak that is no longer optimal. For the consid-
ered environment, the higher the percentage of randomized par-
ticles, the better the performance, except for the very strong shift
severity of , where 50% randomization performed best.
This deviates from the findings of Hu and Eberhart [23], where
a low to medium randomization strategy performed best. The
difference can be explained by the different test environments:
while our problem has ten peaks, the one considered by Hu and
Eberhart is unimodal. Obviously, if there are several peaks with
the possibility that another peak becomes the optimal one, the
information about the location of the previous optimum is less
valuable, and higher randomization performs better. Indepen-
dent of the parameter settings, QSO performs an order of mag-
nitude better than randomization.

The results on different numbers of peaks assuming a shift
severity of are reported in Table XIV. In accordance to
Hu and Eberhart’s results, on the single peak, a randomization
fraction of about performs best, at least for population

TABLE XIV
PERFORMANCE OF STANDARD PSO WITH REINITIALIZATION OF A FRACTION �

OF THE POPULATION, DEPENDING ON THE NUMBER OF PEAKS p

size of 30 (cf. Table XIV). A larger population performs better
in combination with low randomization , while with
high randomization, a smaller population size seems slightly
better. This is not surprising as both a large population size as
well as randomization are means of increasing diversity and can,
to same extent, substitute each other. Also, with larger random-
ization, quick convergence becomes important, which is facil-
itated with smaller population sizes. On the 10 and 200 peak
environment, QSO again performs much better than
either of the randomization approaches. On the single moving
peak, QSO suffers from the fact that it cannot utilize
more than one population, which significantly decreases perfor-
mance as has already been discussed in Section III-H. On the
other hand, if it is assumed that the environment is unimodal,
and the number of swarms is chosen according to (13), then
QSO with a single population again performs much
better than either of the randomization approaches (0.47 0.02,
cf. Table X).

2) Comparison With Hierarchical Swarms: Jansen and
Middendorf [24] propose an adaptation of PSO to dynamic
environments by introducing a dynamic and hierarchic neigh-
borhood structure. This is supposed to maintain some particle
diversity, useful in dynamic environments. The approach has
been tested on a MPB with a 40 particle swarm and 100 itera-
tions between changes. There are 41 evaluations per iteration
(each particle, and the global best to check for change) and an
additional 39 evaluations if change is detected. So there are
4139 evaluations between function changes. Other parameters
were 50 peaks, and a shift severity of .

Jansen and Middendorf [24] report an offline error of around
8.5 for the hierarchical swarm after 8000 iterations (=80 peak
shifts), which is not improved further until the end of the run at
iteration 30 000.

For comparison, we run a similar experiment with our
multiswarm approach. As suggested in Section II-D, we

set our parameters as follows: , , and
. After 100 peak shifts, the offline error is

3.52, with a standard error of 0.06. Compared with the offline
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error 8.0 of the hierarchical swarm, this corresponds to a re-
duction of 54%.

3) Comparison With Self-Organizing Scouts (SOS): The
self-organizing scouts (SOS) approach is a state-of-the-art EA
approach to dynamic optimization problems [14]. Since our
multiswarms are inspired by SOS, it is interesting to compare
the two approaches. In [13], results of SOS are reported for a
number of different MPB instances. On the standard instance
with 10 peaks, 5 dimensions, , and a change every
5000 function evaluations (which has also been our standard
setting), SOS achieves an offline error of 4.01, while mQSO in
its configuration achieves 1.75 (cf. Table III), which
corresponds to a reduction by 56%! For and otherwise
identical parameter settings, for SOS an offline error of 6.54
has been reported, while according to Table VI, mQSO has an
error of only 3.13, corresponding to a reduction by 56%. And
with 200 peaks and , SOS yields an offline error of
3.62, while mQSO produces an error of only 2.63, a reduction
of 38%.

So far, we can only guess why our PSO-based multiswarm
approach works so much better than a similar EA-based mul-
tipopulation approach on the problems we used for testing. It
might be due to the better local optimization capability of PSO.

IV. CONCLUSION

In a dynamic environment, it is important that the optimiza-
tion algorithm is able to continuously track the moving optimum
over time. In this paper, we extend and explore a PSO approach
from [2] to tackle dynamic environments. The approach has
been motivated by the multipopulation approaches in the evo-
lutionary computing area, which try to keep a number of sub-
populations “watching” over, and following, promising peaks
of the fitness landscape. Following that idea, it was suggested to
divide up the swarm into several subswarms and to incorporate
the following three diversity operators.

1) Quantum particles. Standard PSO swarms converge over
time, thereby losing diversity, and thus their ability to
quickly react to a peak’s move. Quantum particles appear
at random positions, uniformly distributed around the
swarm’s global best. They ensure a swarm’s particle
diversity, and thus its adaptability. Besides quantum
particles, we have also considered the earlier published
charged PSO as an alternative throughout this paper.

2) Exclusion. The idea of multiple swarms is to distribute
them over the different peaks in the landscape. Two or
more swarms sitting on the same peak is a waste of ca-
pacity. Exclusion is a local interaction between swarms,
aimed at ensuring swarm diversity: whenever two swarms
are getting too close (one swarm’s global best lies within
a distance of from the other swarm’s global best),
the two swarms compete and the one with lower fitness is
reinitialized.

3) Anti-convergence. In an environment, where there are
possibly more peaks than swarms, it is necessary to keep
constantly patrolling for new and better peaks. To this
end, the paper proposed an anti-convergence operator,
which reinitializes the worst of all swarms once all

swarms have converged. Note that this operator consti-
tutes a global swarm interaction.

For all additional parameters introduced by the above mod-
ifications, we have analytically derived guidelines for suitable
settings.

The approach has been tested extensively on a variety of in-
stances of the MPB, with varying shift severity and between 1
and 200 peaks. The results show that it performs well over a
wide range of problem characteristics, that it is rather robust
with respect to parameter settings, and that the parameter set-
tings derived analytically are indeed appropriate.

Compared with previously published results on the MPB,
namely, SOS [13] and a hierarchical PSO [24], our approaches
cut the offline error approximately by half. Compared with ran-
domization scheme [23], the improvement was even about an
order of magnitude.

Overall, we can conclude that our approach is very suitable
for dynamic environments, being robust and dramatically
outperforming previous approaches on the same benchmark
problem.

The only aspect where performance was below expectations
is the case where the number of swarms is much larger than the
number of peaks. This could perhaps be alleviated by making
the number of swarms self-adaptive, allowing them to join and
to split as needed. This is future work.
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