
Cooperative bare bones optimisation

May 29, 2013

Tim Blackwell, Goldsmiths, University of London

1

1 In the beginning

. . . there was SPECT

2

2 Particle swarm optimisation

PSO

n component vectors xi, pi, u1,2

scalars w, φ1,2

Ni social neighbourhood of particle i

u1, u2 ∼ U(0, 1)n

xi ← xi + wvi +
φ1

2
u1 ◦ (pi − xi) +

φ2

2
u2 ◦ (gi − xi)

pi ← BEST (pi, xi)

gi ← BEST (pj ∈ Ni)

3

Kennedy’s bare bones version of PSO

µ =
gi + pi

2
δ = |gi − pi|
x = µ+ δN(0, 1)

pi ← BEST (pi, x)

4

Bare bones with jumps

Two neighbourhoods, one for the focus determination and
one for the spread.

A hidden scalar α multiplying the spread parameter δ is
revealed. Tune α to the edge of collapse for maximum con-
vergence rate.

A small probability of jumping in each component - a tail
broadening measure, but unlike heavy tailed distributions
such as Cauchy or Lévy, the broadening does not scale with
the distribution parameters.

5

Bare bones with jumps: the workings

θ = (u ∼ U(0, 1) < pJ) ? 1 : 0

µ = BEST (pi ∈ Ni)

δ = DIFF (pj, pk ∈Mi)

x = (1− θ)(µ+ αδN(0, 1)) + θU(−X,X)

N(µ, σ2) is the normal distribution with density

ρµ,σ2(x) = e
− (x−µ)2

2σ2√
2πσ2

.

6

Bare bones with jumps: derivation of αc

Replace N − 1 particles by a mean field p. Considering
updates from g in the top diagram, either g moves and δ
increases or p moves and δ decreases.

O g p

O gp

A ‘no-collapse’ condition is Eδ(t+ 1) = δ(t).

7

Bare bones with jumps: derivation of αc

Assuming that if x falls to the left of g then g will certainly
move, and if x falls to the right then p will certainly move
yields

Eδ =

∫ 0

−∞
(|x|+ δ)ρg,σ2dx+

∫ ∞
0

xρg,σ2dx

= δ

which is easily solved to give αc = 0.63. A more refined
calculation taking into account the lower diagram gives
αc = 0.65.

8

Bare bones with jumps: parameter values

αc is the minimum scaling to ensure no collapse, and cor-
responds to the fastest convergence.

Experiments in 30D hint that α = αc is optimal, and indeed
that a global focus neighbourhood (BEST (pi ∈ N) = g)
and a local, ring, spread neighbourhood (DIFF (pi, pj ∈
M) = |pi1 − pi+1|) are the preferred configurations, and
that the jump probability should be set to 0.01.

9

3 Easy functions

Objective functions f : [−X,X]n → R. The aim is to find
the global minimum f ∗ of f .

f is optimised by {x∗ : f ∗ = f(x∗)}.

We are interested in non-convex, multi-modal optimisation.

Heuristic algorithms such as PSO and GA attempt to find
an approximate and adequate solution.

10

Easy functions

PSO does not depend on gradient information. This means
that it optimises equivalence classes of functions,

f ∼ g if f(x) < f(y)⇒ g(x) < g(y).

The performance on g will be identical to that on f (given
the same initial configuration and sequence of pseudo ran-
dom numbers). This is a small class.

We might expect that PSO performs well on separable func-
tions due to its component-by-component update.

11

Easy functions: separability

A function is separable if

x∗i = arg min
xi

f(x1, x2, . . . xn).

Separability is important because an optimiser could opti-
mise in any subspace, holding the rest of x fixed.

Separable functions are easy?

12

Easy functions: separability

However, separable functions are rare. (Take a separable
function, dilate if necessary to break any spherical symme-
try, and rotate by any angle.)

Although many of the popular benchmarks are (surprisingly)
separable, heterogeneous problems (problems that are the
direct product of subproblems, for example a composition
of a continuous and a discrete subproblem) are separable in
the respective subspaces.

13

Easy functions: the length of a vector in various
spaces

Consider the family of functions ||·||p : [−1, 1]n → R, p ≥ 0
that measure the separation of x from O. These are the Lp

norms, p > 0:

||x||p =

(
n∑
i=1

|xi|p
)1/p

(Added 23 April.) The triangle inequality does not hold
for 0 < p < 1 so the Lp norm is defined only for p ≥ 1.
However for 0 < p < 1 we get a concave function - see
later empirical results.)

14

Easy functions: the length of a vector in various
spaces

The L1 norm is the Manhattan distance, and the L2 is the
Euclidean distance.

||x||22 is also known as the Sphere function.

||x||∞ is Shwefel’s 2.21 function, the ‘Box’ function,

f(x) = ||x||∞ = sup |xi| : i = 1 . . . n, x ∈ [−1, 1]

The f = || · ||p family is unimodal and, apart from ||x||∞,
it is separable.

(Added 16/4/13.) Notice that f is convex for p ≥ 1. Convex functions are, in principle,
optimised efficiently (ref?). In particular, if a convex function has a local minimum then
this minimum must be a global minimum.

However f is concave (but still unimodal) for p < 1.

15

Easy functions: the length of a vector in various
spaces

We shall use easy functions in the following to gain insight
into high dimensional optimisation and to theoretically in-
vestigate algorithm behaviour. They should also be included
in any benchmark trial since not all algorithms find them
that easy!

16

4 Surprises in high dimensions

Where the initial points land

Uniform random initialisation in [−1, 1]n. Consider the inner
box [−1 + δ, 1 − δ]n that has half the available volume of
2n.

vol([−1 + δ, 1− δ]n) = 2n(1− δ)n

= 2n−1

⇒ δ = 1− 2−1/n

In particular δ(30) ≈ 0.023, δ(100) ≈ 0.0069, δ(1000) =
0.00069

17

Where the initial points land: box initialisation

Half of the points are within δ of a face. (The vertical axis
in plot below is log10(δ).)

0 20 40 60 80 100

-2
.0

-1
.5

-1
.0

-0
.5

n

δ

18

Where the initial points land: more general search
volume

If vol ∼ crn for some constant c and length scale r then
consider the volume of the shape of dimension r − ε that
has half the volume:

vol(r − ε) = crn(1− ε/r)n

=
1

2
crn

⇒ ε/r = 1− 2−1/n.

19

Where the initial points land: even more general
search volume

Consider any compact set C. By the isoperimetric principle,
it has surface area at least the surface area of a ball with the
same volume. An ε extension that doubles the volume of
C will have a smaller ε than for the corresponding ball. For
the unit ball B, vol(B) = cn, and the vol of its ε extension
is cn(1 + ε)n(= 2cn).

Hence ε′ ≤ 21/n − 1 for any compact search volume.

20

Where the initial points land: using the Brunn-Minkowski
inequality

A quantitative expression of the isoperimetric principle is
the Brunn-Minkowski inequality

vol(C +D)1/n ≥ vol(C)1/n + vol(D)1/n

where the Minkowski sum of two sets is C +D = {c+ d :
c ∈ C, d ∈ D}. The dilatate rC is defined {rc : c ∈ C}.

21

Where the initial points land: using the Brunn-Minkowski
inequality

The same argument then proceeds via the BM inequality:
consider when vol(C) = vol(B)(= cn) and extend C by
adding balls εB to the surface (centre of the ball is at each
point c ∈ ∂C). Then

vol(C + εB)1/n ≥ vol(C)1/n + ε vol(B)1/n

⇒ vol(C + εB) ≥ (1 + ε)nvol(B)

⇒ 2vol(C) ≥ (1 + ε)nvol(B)

21/n − 1 ≥ ε.

22

Where the initial points land: intuition

Alternatively, consider the components of x: x1, x2, . . . xn.
If one or more of the components is within δ of the edge
then x will lie close to the surface.

The probability that none of the components is within δ
of the edge (±1) is (2 − 2δ)n/2n = (1 − δ)n→0 for any
1 ≥ δ > 0 as n→∞.

Hence search points (pi) = (p1, p2, . . . pN) uniform ran-
domly positioned in C will concentrate (as n → ∞) on
the surface!

23

Where the initial points land: summary

1. high dimensional spaces are poorly sampled by uniform
distributions

2. search launched from uniformly distribute initial points
will quite likely (prob ≈ 1

2) leave the search volume

3. 30 is a large number

(Added 16/4/13.) The estimation prob ≈ 1
2

is a consequence of the search spread at

initialisation for any reasonable algorithm will of the order of the size of the box i.e.

something like 2.

24

Effective search volume is negligible

Take one of the initial points g, and launch a search with g
as a focus and with search spread determined by the sepa-
ration of initial points (pi).

Assume a normal search and generate trial points

x ∼ N(µ, σ2)

where µ = g and σ = σ(|pi − pj|).

25

Effective search volume is negligible

Actually, in BBJ, σ = α|pi−1 − pi+1|, and the trial position
is formed component by component, xd ∼ N(gd, α|pi−1,d−
pi1,d|). In this case set σ to max(σd).

For two points x, y uniform randomly in [−1, 1]n then
E(|xd − yd|) = 2/3.

26

Effective search volume is negligible

99.7% of the trial points will lie in a ball of radius 3σ =
6/3 = 2. Since g is very likely at the boundary, half of these
will land inside [−1, 1]n. They will land in a volume

1

2
cn2

2 =
1

2

(
πn/2

Γ(n/2 + 1)

)
22

or,

eff search vol

vol of search space
=

1

2

(
πn/2

Γ(n/2 + 1)

)
→ 1

2

(
2πe

n

)n/2
≈ 1

2

(
17

n

)n/2

27

Effective search volume is negligible

As an example, eff search vol
vol of search space ≈ 1.7× 10−39 (n = 100).

At n = 30 we find eff search vol
vol of search space ≈ 10−5 (without Stirling’s

approx).

30 is a large number and 100 is impossibly big.

28

Difficulty of finding a better value: Box function

f(x) = ||x||∞ = max(|x1|, |x2|, . . . , |xn|), x ∈ Rn∩[−1, 1]n.

Suppose that maxd |xd| = |x1| and x1 > 0.

x1 ∼ U(−1, 1), x2 ∼ U(−1, 1), . . .

The update probability Pu is

Pu =

(
2|x1|

2

)n
= |x1|n.

29

Difficulty of finding a better value: Box function

We can estimate x1 from the expectation of max(x1, x2, . . . xn)
where xi ∼ U(−1, 1).

This can be calculated from the probability density dx
2 , or

just consider distributing n points evenly along [−1, 1] i.e.
(n+ 1)∆ = 2⇒ max |n| = 1−∆ = n−1

n+1 . So

Pu =

(
n− 1

n+ 1

)n
.

An initial update is increasingly certain as n→∞.

But what if x1 = 0.1 at some later stage of the optimi-
sation? Then Pu = 0.1n. Even at n = 30, the update
probability for uniform search is 10−30.

30

Difficulty of finding a better value: Box function, nor-
mal search

Search is launched from g and suppose that f(g) = g1.
Then the update probability Pu is

Pu =

∫ g1

−g1
e
− 1

2

(
x−g1
σ1

)2
dx√
2πσ2

1

d=n∏
d=2

∫ g1

−g1
e
− 1

2

(
x−gd
σd

)2
dx√
2πσ2

d

An upper estimate can be made by setting gd>1 = 0 and
σi = max(σ1, σ2, . . . σn):

Pu ≤
∫ g1

−g1
e−

1
2(

x−g1
σ)

2 dx√
2πσ2

(∫ g1

−g1
e−

1
2(

x
σ)

2 dx√
2πσ2

)n−1

.

31

Difficulty of finding a better value: Box function, nor-
mal search

Once more suppose that maxd |xd| = g1 = n−1
n−2 .

Furthermore, we suppose that σ = 2/3.

Pu ≤
∫ n−1

n+1

−(n−1n+1)

ρn−1
n+1 ,

4
9
(x)dx

(∫ n−1
n+1

−(n−1n+1)

ρ0, 49
(x)dx

)n−1

=

∫ 0

−2(n−1n+1)

ρ0, 49
(x)dx

(∫ n−1
n+1

−(n−1n+1)

ρ0, 49
(x)dx

)n−1

<

∫ 0

−2

ρ0, 49
(x)dx

(∫ 1

−1

ρ0, 49
(x)dx

)n−1

≈ 0.50 ∗ (0.87)n−1

Clearly Pu vanishes exponentially in n. For example Pu(100) ≈
3.4× 10−7, Pu(1000) ≈ 3.0× 10−63.

32

Difficulty of finding a better value: Box function, nor-
mal search

The difference in initial Pu between normal search and uni-
form search is because normal search concentrates in an
n-ball of radius less than half the diameter of the search
volume.

Consider a ball of radius 1, just fitting inside the box[−1, 1]n.

The volume of the ball is cn = πn/1

Γ(n2 +1) . Using the large n

approximation Γ(n) ≈ (ne)n then

vol ball

vol of box
→
(πe

2n

)n/2
≈
(

4.27

n

)n/2
≈ 3× 10−69 (n = 100).

33

Difficulty of finding a better value: square root of
sphere function

f(x) = ||x||2 =
(
|x1|2 + |x|2 + . . .+ |xn|2

)1/2
, x ∈ Rn ∩

[0, 1]n.

Uniform search

A random point in the search space will lie on a level set
- the n − 1-sphere, or surface of the n−ball. Enclose the
ball by a box of length twice the radius of the ball. The
update probability is then at least the ratio of these volumes,(
πe
2n

)n/2
(n→∞).

34

Difficulty of finding a better value: square root of
sphere function, normal search

!

"

#

$

% &'(

')

Figure 1: Diagram showing an update volume composed of two hyperspher-
ical caps, C1 and C2. C1 has radius R, base AB and polar angle Φ =

cos−1
(

1− r2

2R2

)
. C2 shares base AB with C1 and has radius r and polar angle

φ = cos−1
(
r
2R

)
. In 4gOB, φ = ∠OgB and Φ = ∠gOB. This diagram depicts

the situation for 0 ≤ r ≤
√

2R. As r grows from 0, cap C1 increases in size,
reaching a D-hemisphere at r =

√
2R.

35

Difficulty of finding a better value: square root of
sphere function, normal search, technical stuff

Denote the volume of the n-ball Bn(r) of radius r by
vol(Bn(r)) ≡ V B

n (r) (= cnr
n).

The volume of an n-cap of polar angle φ and radius r is

∫ r

r cosφ

V B
n−1((r

2 − z2)n/2)dz =

∫ 0

φ

V B
n−1(r sin θ)(−r sin θ)dθ

= rV B
n−1(r)

∫ φ

0

sinn θdθ

Useful identity:∫ φ

0

sinn θdθ ≡ Jn(φ) = 2Bsin2 φ(
n+ 1

2
,
1

2
)

where Bz(a, b) is the incomplete beta function, defined as
Bz(a, b) =

∫ z
0 t

a−1(1 − t)b−1dt and B1(a, b) ≡ B(a, b) =
Γ(a)Γ(b)
Γ(a+b) is the complete beta function.

36

Difficulty of finding a better value: square root of
sphere function, normal search, technical stuff

The update probability is

Pu =
vol(cap of angle φ) + vol(cap of angle Φ)

vol(ball of radius r)

=
rV B

n−1(r)Jn(φ) +RV B
n−1(R)Jn(Φ)

2rV B
n−1(r)Jn(π/2)

=
Jn(φ) +

(
R
r

)n
Jn(Φ)

2Jn(π/2)

37

Difficulty of finding a better value: square root of
sphere function, normal search, technical stuff

Simple geometry gives the relations cos Φ = 1− r2

2R2 , cosφ =
r

2R ,
R
r = sinφ

sin Φ and some analysis provides

lim
a→∞

Bz(a, b) =
za(1− z)b−1

a
+O(

1

a2
)

lim
a→∞

B(a, b) = a−bΓ(b).

(The first can be derived with integration by parts, or, an
asymptotic expansion in 1/a can be derived by a Laplace
transform. The expansion is valid for small z = sin2 φ -
a different expansion is needed for φ → π/2, the small
r limit. The second follow from Stirling’s approximation
Γ(z) ∼ (z/e)z and limn→∞(1 + x/n)n = ex.)

38

Difficulty of finding a better value: square root of
sphere function, normal search

lim
D→∞

Pu =
sinD φ(tan Φ + tanφ)√

2πD
.

Since 0 < sinφ < 1 then Pu → 0 as D →∞.

39

Difficulty of finding a better value: square root of
sphere function, normal search, simpler

Or, enclose the lens by an n-ball of radius r sinφ. Then
Pu < vol(Bn(r sinφ))/vol(Bn(r)) = sinn φ. In fact the
result follows by enclosing the lens in any ball of radius less
than r.

40

Difficulty of finding a better value: square root of
sphere function, normal search

0.0 0.2 0.4 0.6 0.8 1.0

-4
.0

-3
.5

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

ρ

lo
g 1
0(
P
u)

D = 50D = 100D = 200D = 400

Figure 2: Plot showing variation of update probability Pu as a function of
ρ = r/R for various dimensions D = 50, 100, 200, 400

41

Difficulty of finding a better value: square root of
sphere function, normal search

0 200 400 600 800 1000

-1
4

-1
2

-1
0

-8
-6

-4
-2

0

D

lo
g 1
0(
P
u)

ρ = 1 ρ = 0.7 ρ = 0.5

ρ = 0.2

Figure 3: Update probability Pu as a function of D for ρ = 0.2, 0.5, 0.7. The
full line is the exact value, and the dashed line shows the large-D asymptotic
expression for Pu.

42

Strange fact concerning standing on an n-ball

Another way to look at this result is to imagine yourself
standing on the surface of an n-ball. Then the volume be-
low your feet is exponentially small compared to the volume
of space around you. The surface curves so rapidly, the sur-
face appears as a needle and you are standing on the tip.

But how do n-balls appear to microbes?

43

Strange fact concerning a microbe on an n-ball

Consider fixed n but decreasing r.

From the small z approximations

Bz(a, b) ∼
za

a

(
1 +

a(1− b)
a+ 1

z +O(z2)

)
B1−z(a, b) = B(a, b)−Bz(b, a)

∼ B(a, b)− zb

b

(
1 +

b(1− a)

b+ 1
z +O(z2)

)
we find

lim
r→0

(R/r)nBsin2Φ(a, b) =
2ρ

n+ 1
− (n− 1)ρ3

4(n+ 3)
+O(ρ5)

and

lim
r→0

Bsin2φ(a, b) = B(a, b)− 2ρ+
(n− 1)ρ3

3
+O(ρ5)

where ρ = r/R.

44

Strange fact concerning a microbe on an n-ball

Combining terms we have

lim
r→0

Pu =
B(a, b)− (2n

n+1)ρ+ (n−1)(4n+9)
12(n+3) ρ3

2B(a, b)
→ 1/2,

which demonstraties that Pu → 1/2 as r → 0 at fixed n.

The conclusion is that an update from any position is ex-
ponentially unlikely for ||x||2, unless the search spread is
exponentially tiny, in which case progress is exponentially
slow.

45

Hopelessness of high dimensional search

But the result generalises. Suppose we search from a point
p and better regions are enclosed by n-balls. Update will be
very unlikely as long as the total volume of all the n-balls
is less than the search volume.

!

Figure 4: The search volume is focused on a point p. Black regions depict
volumes with lower function value then f(g). The update volume is enclosed
by a bounding sphere. The update probability is therefore bounded by the
probability that a trial position lies inside the bounding sphere. The analysis
for update within a spherical fitness volume applies and again we deduce that
Pu → 0 as n→∞.

46

In the light of all this gloominess, is high dimensional
optimisation hopeless?

Yes.

But we can optimise in low dimensions (1, 2, 3, and 4, per-
haps 10) and high dimensional spaces have low dimensional
subspaces, so perhaps we can proceed by low dimensional
optimisation.

47

5 Subspace optimisation

The idea is to break H into K subspaces ⊕K1 Hk of dimen-
sion nk each (

∑
nk = n). Then try and optimise x1:n in

each subspace separately whilst holding components in in
the other subspaces fixed.

For example, spilt x into x1:kxk+1:n and hold xk+1:n fixed
whilst seeking trials y1:k such that y1:nkxk+1,n provides a
better solution than x.

The venerable line search, a traditional algorithm well de-
scribed in Numerical Recipes follows this procedure with
K = n, nk = 1.

However we are interested in optimisation by a population.
What subspace dimensionality is preferred?

48

Subspace optimisation: ||x||∞

x contains a single component, xm that has to be reduced,
and this occurs in just one subspace.

So all subspace trials that are not in xm’s subspace produce
no improvement.

Suppose that a trial in the subspace containing m manages
an update with probability pnk i.e. each component has a
probability of p of producing a component yi : |yi| < |xm|.

Then the probability of update can be estimated

Pu ∼
nk
n
pnk.

Optimising Pu in nk gives nk = log(1
p). One dimensional

subspaces are preferred for p > 0.22. For smaller probabili-
ties, larger subspaces are optimal.

49

Subspace optimisation: ||x||2

Now look at ||x||2 and search using normal sampling, yi ∼
N(xi, σi).

Update will happen if (choosing subspace k = 1 for sim-
plicity), y2

1 + y2
2 + . . .+ y2

n1
< x2

1 + x2
2 + . . .+ x2

n1
.

The statistic Y =
∑n1

1 yi/σi follows the non-central chi
squared distribution χ2

n1,λ
where λ =

∑
(xi/σi)

2.

The CDF P (y;n1, λ) is an infinite sum over complete and
incomplete gamma functions.

50

Subspace optimisation: ||x||2

In any case, we find

Pu = P (λ;n1, λ)

which is a decreasing function of n1. The optimal subspace
dimension is therefore nk = 1, which fits with the picture
of the spherical symmetry of the normal distribution at con-
stant σi in each dimension.

The volume enclosed by Pu will be an n−ball and the ratio
of the volumes of the n-ball to the n-cube falls exponen-
tially with n. We expect that nk might be optimal.

51

Subspace optimisation: not yet the whole story

Pu is not the whole story.

We should also consider the rate of progress EPuδx.

A high Pu but small subspace dimensionality has to be bal-
anced with the need (in population algorithms) to give each
individual an update. One iteration through the population
requires NK evaluations, which rises to Nn for one dimen-
sional subspaces.

It might be better to tolerate a smaller success rate per indi-
vidual in order to conserve evaluations and allow information
to flow through the population i.e. increase the number of
iterations. (We are assumed that the constrained resource
is total number of function evaluations.)

52

6 Subspace optimisation with a population

Line search - nk = 1 and N = 1.

The extension to N, nk > 1 yields many possibilities, and
also dangers.

In cooperative schemes, the subpopulations optimise in their
respective subspaces, but the fitness is determined by an
evaluation across the subpopulations.

We might expect subspace search to be a successful strategy
for separable functions if the optimisation subspaces align
with the separation subspaces.

53

Dangers of subspace optimisation: trapping optima

Subspace optimisation suffers from trapping optima. These
are optima that the algorithm can never leave, even if all
points in each subspace are evaluated! This can happen at
a saddle point, but also in a basin of attraction of a sec-
ondary optimum.

54

Dangers of subspace optimisation: trapping optima

!"

#

$

Figure 5: Contour plot of a two dimensional function with global minimum at
A, a local minimum at B and a saddle point at SP.

55

Dangers of subspace optimisation: trapping optima

!

"

#"$%&!'(

#!$%&"'(

)

*

Figure 6: Trial position x = (x1, x2) is rejected when evaluated in subspaces
1 and 2. The contect vector is y = (y1, y2) and the function value contours
decrease towards the two minima at A and B. The points c1(y,x) = (x1, y2)
and c2(y,x) = (y1, x2) have higher function values than the current best, f(y).

56

Dangers of subspace optimisation: outdated memory

Cooperative schemes split a swarm into K subswarms. Each
subspace has s components and n = Ks. A context vec-
tor ĝ is constructed by concatenating the global bests gk of
each subswarm, ĝ = g1g2 . . . gK .

The problem is that the personal best of particle i in sub-
space k is evaluated in context ĝ(t′) and the global best
of subswarm k is with respect to a context at possibly a
different time, ĝ(t′′).

Situations can occur when a trial is rejected even if it is the
best ever tested.

57

Dangers of subspace optimisation: outdated memory

This is the problem of outdated memory. Ideally, whenever
the context changes, all values of personal bests should be
re-evaluated. Exactly the same problem occurs in dynamic
optimisation when a shift in the global optimum renders all
stored values inaccurate at best, and at worst, misleading.

However scrupulous memory updating in new contexts is
very expensive in terms of the allocated total function eval-
uations available.

The solution in CBBJ is to decouple the context vector from
the global bests in each subswarm. Every trial is compared
to the context vector, and the context vector is updated
irrespective of what happens to the personal and global
bests.

58

Possible dangers of subspace optimisation: random
groupings

Various authors have proposed random subspace groupings.
The idea is to counteract component interaction.

A firm definition of component interaction is not to be found
in the literature but presumably is one of two types:

1. f is separable into two or more subspaces, but this sep-
aration is not known to the algorithm.

2. During the course of optimisation, a position x might
be reached where movement in a particular subspace Hk

is beneficial e.g. moves x away from a local optimum or
causes a large reduction of function value (for example if
xi,j,k... have particularly high values and xi,j,k... occur in f
with a positive power.) Hk is not a separable subspace of
f and might not consist of contiguous components or be a
subspace in the original grouping.

59

Possible dangers of subspace optimisation: random
groupings

Subspace shuffling and subspace size might occur accord-
ing to a fixed scheme, or the subspaces might be chosen at
randomly whenever shuffling is implemented.

In CCPSO2 (Li and Yao TEC (2012) 16:210-224), if no
improvement occurs after a complete iteration then a new
subspace size s is chosen from a number of preset alterna-
tives.

This yields a high rate of re-grouping, higher than in prior
cooperative PSO’s. The idea is that the system has a higher
chance of capturing interacting variables.

60

Possible dangers of subspace optimisation: random
groupings

It might be argued, however, that each regrouping disrupts
the swarm. A PSO typically needs several iterations for
effective information transfer. The swarm functions as a
complex system and its behaviour is not manifest on short
time scales. Regrouping places particles in completely dif-
ferent subswarms.

61

Cooperative BBJ

Rather than think of subswarms, the cooperative algorithm
is perhaps easier to conceive as a single swarm with each
particle searching in each of the subspaces.

In the following CBBJ algorithm, the swarm update loop,
the one that moves the particles, is identical to the BBJ
update rule.

Cooperation enters at the evaluation stage where a parti-
cle’s personal best pi has K values fki, each associated with
a different subspace.

The swarm best g also has K values.

There is a single context vector ĝ with a unique value, rep-
resenting the best value ever fund by the swarm.

62

i = 1 . . . N, k = 1 . . . K, d = 1 . . . n

pi = ⊕pik, g = ⊕gk = ⊕ck
ck(x, y) injects subspace component of y into x

∀i
xid ∼ N(gd, α|p(i−1)d − p(i+1)d|)
θ = (u ∼ U(0, 1) < pJ) ? 1 : 0

xi = (1− θ)(g + α|p(i−1)d − p(i+1)d|N(0, 1)) + θU(−X,X)

∀k ∀i
fx = f(ck(ĝ, xi))

if (fx < fki) // update personal best

pi ← ck(pi, xi)

fki ← fx

if fx < fk // update swarm best

g = ck(g, pi)

fk = fx

if (fx < fĝ) // update context

ĝ ← ck(ĝ, xi)

fĝ = fx

63

7 Empirical investigation of subspace dimension-
ality

5 10 15 2050
00
0

15
00
00

25
00
00

35
00
00

subspace dimension

fu
nc

tio
n

ev
al

ua
tio

ns

Figure 7: Mean evaluations need to optimise 2008.1, shfted sphere, in 100D,
by sgl-BBJ. All parameters, error bars, runs etc as for Figure 12. The steps
that are superimposed on the curve are possibly due to the uneven subdivision
into subspaces when D % Dk 6= 0 e.g. at Dk = 19, the algorithm will chose
5× 19 + 1× 4 and at Dk = 5 the algorithm will chose 5 × 20.

64

2 4 6 8 10 12 14

50
00
00

10
00
00
0

15
00
00
0

20
00
00
0

subspace dimension

fu
nc

tio
n

ev
al

ua
tio

ns

Figure 8: Mean evaluations need to optimise 2008.1, shfted sphere, in 500D, by
sgl-BBJ. All parameters, error bars, runs etc as for Figure 12. The function was
not optimised within 5000D evaluations for any Dk > 15.

65

2 4 6 8 10 12

10
00
00
0

20
00
00
0

30
00
00
0

subspace dimension

fu
nc

tio
n

ev
al

ua
tio

ns

Figure 9: Mean evaluations need to optimise 2008.1, shfted sphere, in 1000D,
by sgl-BBJ. All parameters, error bars, runs etc as for Figure 12. The function
was not optimised within 5000D evaluations for any Dk > 13.

66

2 4 6 8 10 12 14

15
00
00

25
00
00

35
00
00

subspace dimension

fu
nc

tio
n

ev
al

ua
tio

ns

Figure 10: Mean evaluations need to optimise 2008.4, shfted Rastrigin, in 100D,
by sgl-BBJ. All parameters, error bars, runs etc as for Figure 12. The function
was not optimised within 5000D evaluations on some or all runs for any Dk > 15.

67

2 4 6 8 10

10
00
00
0

14
00
00
0

18
00
00
0

subspace dimension

fu
nc

tio
n

ev
al

ua
tio

ns

Figure 11: Mean evaluations need to optimise 2008.4, shfted Rastrigin, in 500D,
by sgl-BBJ. All parameters, error bars, runs etc as for Figure 12. The function
was not optimised within 5000D evaluations on some or all runs for any Dk > 10.

s = 1 can indeed offer the best answer, and especially for
spherically symmetric functions, but it has a large margin
of error for a multimodal function. s = 4 is a good choice
for the latter.

68

8 Scalability of CBBK

Evidence that cooperation breaks the curse of dimensional-
ity and offers a scalable algorithm.

200 400 600 800 1000

0
50
00
00

10
00
00
0

15
00
00
0

D

ev
al
s

Figure 12: Plot of mean evaluations needed to achieve an error of 1e − 8
for sgl-BBJ optimisation of CEC 2008 shifted sphere as a function of di-
mensionality D, for D ∈ [50, 1000]. The error bars show 95% confidence
limits. Each point represents 50 runs. {N,Dk, α, pJ} = {40, 4, 0.65, 0.1},
{I, S, T} = {uniform, nearest, 1e− 8 ∨ E = 5000D}, {f,D, V } = {2008.1, D ∈
[50, 1000], [−100, 100]D}. The line shows the linear fit E = mD + c,m =
1379.24± 52.09, c = −70222.34± 31200.29 (±standard errors), R2 = 0.975.

69

9 Experiments

The results in Table 1 show the importance of subspace op-
timisation for BBJ, and ability to solve separable functions
in low dimensionalities.

Table 1: Optimisation of Lp in D = 30. All functions have shifted optimum
locations. The table reports mean number of evaluations needed to optimise
each Lp function. () indicates standard err. Experiment methodology as for
CEC 2008 except a termination condition of error less than 1e−5 was used. The
case p = 2/3 has been included even though the function || · ||2/3 is not a norm.

Fn CBBJ CKPSO BBJ

p = 2/3 astroid 20563(76) 76108(600) NEVER

p = 1 diamond 17080(70) 65243(300) NEVER

p = 2 sphere 14491(76) 56621(234) NEVER

p = 10 rounded box 14261(121) 55521(333) NEVER

70

Table 2 compares CBBJ with state-of-the art PSO’s in 30D.

CBBJ doesn’t appear to suffer in non-separable problems
despite the lack of subspace shuffling.

Table 2: CEC 2005. D = 30. ∗,† indicate a rotated/non-separable function. All
functions have shifted optimum locations and non-zero biases. Terminated at
300000 evals (min error = 0). The function groupings are unimodal, multimodal
and ‘expanded’ (f(x) =

∑
f(xi, xi+1)). CLPSO is the comprehensive learning

PSO, DMPSO is the dynamic multiswarm agorithm, UPSO is a ‘unified’ PSO
and FIPS is the fully informed PSO.

Fn CBBJ CLPSO DMSPSO UPSO FIPS

f1 sph 1.41(0.37)E-13 0.00(0)E+00 3.14(4.15)E+02 1.31(0.73)E+03 5.25(5.57)E+02

f2 sch12† 7.96(11.54)E+00 3.83(1.06)E+02 7.80(0.21)E+02 7.60(5.29)E+03 1.47(0.23)E+04

f3 ell† 1.06(0.41)E+06 1.19(0.31)E+07 5.62(6.23)E+06 5.30(3.86)E+07 1.95(1.11)E+07

f4 sch12n† 8.91(5.65)E+03 5.40(1.25)E+03 8.56(12.9)E+02 1.88(0.61)E+04 2.07(0.31)E+04

f5 sch26† 1.27(0.32)E+04 4.00(0.43)E+03 4.26(1.87)E+03 1.28(0.23)E+04 1.17(0.14)E+04

f6 ros† 7.91(6.33)E+01 1.78(2.29)E+01 2.72(7.29)E+07 1.19(1.36)E+07 2.46(3.49)E+07

f7 gri†? 4.70(6.95E-13)E+03 4.70(0)E+03 4.34(0.22)E+03 7.52(0.34)E+03 7.48(0.22)E+03

f8 ack†? 2.09(0.07)E+01 2.07(0)E+01 2.09(0)E+01 2.10(0)E+01 2.09(0)E+01

f9 ras 9.55(3.92)E-14 0.00(0)E+00 4.85(1.51)E+01 7.84(1.69)E+01 5.40(1.10)E+01

f10 ras†? 2.25(0.43)E+02 8.02(1.50)E+01 8.00(2.00)E+01 1.59(0.55)E+02 1.53(0.25)E+02

f11 wei†? 2.95(0.41)E+01 2.53(0.19)E+01 2.90(0.23)E+01 3.14(0.47)E+01 2.69(0.26)E+01

f12 sch213† 2.90(3.01)E+03 1.32(0.42)E+04 7.84(6.84)E+04 8.98(5.43)E+04 5.19(3.21)E+04

f13 gri+ros† 9.18(2.48)E-01 1.89(0.40)E+00 1.13(0.56)E+01 9.23(4.56)E+00 9.64(1.73)E+00

f14 sch6†? 1.287320(0.07)E+01 1.25(0.03)E+01 1.21(0.07)E+01 1.28(0.04)E+01 1.23(0.03)E+01

71

Table 3 shows the high dimension results.

Table 3: CEC 2008. The functions are grouped into uni/multi-modal classes.
† indicates non-separability. All functions have shifted optima and non zero
biases.

Fn Dim CBBJ (std error) CCPSO2 sep-CMA-ES

f1 100 5.59e-13 (2.54e-14) 7.73E-14 (3.23E-14) 9.02E-15 (5.53E-15)

sph 500 2.93e-12 (7.37e-14) 3.00E-13 (7.96E-14) 2.25E-14 (6.10E-15)

1000 6.13e-12 (9.38e-14) 5.18E-13 (9.61E-14) 7.81E-15 (1.52E-15)

f2 100 4.64e+00 (8.68e-02) 6.08E+00 (7.83E+00) 2.31E+01 (1.39E+01)

sch† 500 2.13e+01 (1.995e-01) 5.79E+01 (4.21E+01) 2.12E+02 (1.74E+01)

(box) 1000 4.53e+01 (2.63e-01) 7.82E+01 (4.25E+01) 3.65E+02 (9.02E+00)

f3 100 3.84e+02 (9.25e+01) 4.23E+02 (8.65E+02) 4.31E+00 (1.26E+01)

ros† 500 7.96e+02 (4.72e+01) 7.24E+02 (1.54E+02) 2.93E+02 (3.59E+01)

1000 1.40e+03 (2.48e+01) 1.33E+03 (2.63E+02) 9.10E+02 (4.54E+01)

f4 100 4.55e-13 (2.41e-14) 3.98E-02 (1.99E-01) 2.78E+02 (3.43E+01)

ras 500 3.69e-04 (3.69e-04) 3.98E-02 (1.99E-01) 2.18E+03 (1.51E+02)

1000 3.98e-04 (3.98e-04) 1.99E-01 (4.06E-01) 5.31E+03 (2.48E+02)

f5 100 2.11e-02 (7.94e-03) 3.45E-03 (4.88E-03) 2.96E-04 (1.48E-03)

gri† 500 5.74e-02 (2.14e-02) 1.18E-03 (4.61E-03) 7.88E-04 (2.82E-03)

1000 1.31e-02 (5.67e-03) 1.18E-03 (3.27E-03) 3.94E-04 (1.97E-03)

f6 100 6.40e-13 (1.49e-14 1.44E-13 (3.06E-14) 2.12E+01 (4.02E-01)

ack 500 3.46e-12 (2.68e-14) 5.34E-13 (8.61E-14) 2.15E+01 (3.10E-01)

1000 6.94e-12 (5.08e-14) 1.02E-12 (1.68E-13) 2.15E+01 (3.19E-01)

72

10 Conclusions

Straight application of any search technique is doomed in
high dimensional spaces.

A subspace scheme - such as cooperation - appears to break
the curse of dimensionality.

But it has its dangers; trapping optima, outdated mem-
ory and the conflict between subspace shuffling and swarm
destabilisation.

Cooperative BBJ is a simple extension of BBJ, simpler than
other cooperative PSO schemes and simpler than other re-
fined (and expensive) algorithms that adapt a covariance
matrix.

It uses a shared context vector that is distinct from the
subspace bests.

73

Now, back to SPECT. . .

74

	In the beginning
	Particle swarm optimisation
	Easy functions
	Surprises in high dimensions
	Subspace optimisation
	Subspace optimisation with a population
	Empirical investigation of subspace dimensionality
	Scalability of CBBK
	Experiments
	Conclusions

