
Chapter 29

MSMYS4 Generalised Linear Modelling

(29.1) Generalised Linear Regression

(29.1.1) Linear Regression

The familiar linear regression model is of the form

y = β0 + β1x1 + · · ·+ βp−1xp−1 + ε (1)

where var ε = σ2. Here y is the ‘response’ variable and the Xis are covariates which are functions of the
(independent) explanatory variables. (Unfortunately the explanatory variables also get called x.) Observe
that the parameters (the βs) are combined in a linear way and that the model is additive in the sense it has
a linear part plus an error part. These desirable features will be retained in the generalised linear model.

It is usual to assume that y is Normally distributed and that the parameters fi have Normal sampling distri-
butions. Clearly this covers very few cases and the generalised linear model sets out to correct this.

Take for example binary data coming from a Bernoulli distribution with parameter p. Since 0 6 p 6 1 it
would be foolish to assume the sampling distribution of p to be Normal. It will be shown that a suitable
way to estimate p is

p =
1 + exp

(
β0 + β1x1 + · · ·+ βp−1xp−1

)
exp

(
β0 + β1x1 + · · ·+ βp−1xp−1

)
Although this clearly has the required properties it does seem rather unwieldy. Observe that re-arranging

ln
(

p
1− p

)
= β0 + β1x1 + · · ·+ βp−1xp−1

Similarly for Poisson data with distributional parameter λ it is required that λ > 0 and hence one could
take

lnλ = β0 + β1x1 + · · ·+ βp−1xp−1

(29.1.2) Notes On Modelling

Once a model has been fitted it is of interest as to how well it fits the data. Classically the quantity

n

∑
i=1

(yi − ŷi)
2 (2)

is used, and with good reason. This calculation suggests that measurements of the ys are on the same
physical scale, and that measurements are independent. It also suggests that deviations do not depend on
y, so are independent on the mean. However, in the generalised case these assumptions are not always true,
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and other measures such as

n

∑
i=1

(yi − ŷi)
2

ŷi
or

n

∑
i=1

yi ln
(

yi
ŷi

)
− (yi − ŷi)

may be more appropriate. In particular the first of these is suitable for a Poisson variation.

The likelihood function plays an important rôle in assessing the plausibility of values a parameter might
take. The probability density function is treat not as a function of x, the independent variable, but of the
parameter µ, say. Taking the logarithm of the likelihood function in the Normal case gives a multiple of
equation (2). The data values which maximise the likelihood are of course what one might expect to be
observed, and information about the parameters is greatest where the slope of the likelihood surface is
greatest. Hence a well designed experiment, looking for certain data by appropriate choice if independent
variable, can produce better estimates for the parameters.

Trivially, a model with as many parameters as the number of data observed will fit the data perfectly. How-
ever, it does not summarise the data and may be exceptionally poor at predicting other data. A good model
uses as few parameters as possible to create an acceptable fit to the data.

(29.1.3) The Exponential Family Of Distributions

The generalised linear model is concerned with finding models for data through estimating a single param-
eter. The data must have an distribution belonging to the exponential family

ln f (y, θ) =
yθ − b(θ)

φ
− c(y, φ) (3)

where b and c are specified functions. In equation (3) θ is the parameter, while φ is a constant called the
scale parameter or dispersion parameter—it roughly corresponds to variance. Most common distributions
belong to the exponential family. In the Poisson case

ln f (y, θ) =
y ln λ − λ

1
− ln y!

so θ = ln λ, φ = 1, b(θ) = eθ and c(y, φ) = y!. For the binomial distribution

f (y, p) =
(

n
y

)
py(1− p)n−y

hence taking the natural logarithm

ln f (y, p) = y ln
(

p
1− p

)
+ n ln (1− p) + ln

(
n
y

)
(4)
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so θ = ln
(

p
1−p

)
so that φ = 1. Now,

θ = ln
(

p
1− p

)
(1− p)eθ = p

eθ = p
(

1 + eθ
)

p =
eθ

1 + eθ

1− p =
1

1 + eθ

Hence substituting in equation (4) gives

ln f (y, p) = yθ − n ln
(

1
1 + eθ

)
+
(

n
y

)

from this it is now clear that b(θ) = −n ln
(

1
1+eθ

)
.

The Mean Of An Exponential Family Distribution

An obvious question to ask is to the mean (and in due course the variance) of an exponential family distri-
bution. Let f be the probability density function for an exponential family distribution. Then∫ ∞

−∞
f (y, θ) dy = 1 the limits are independent of θ hence differentiating,∫ ∞

−∞

∂ f
∂θ

dy = 0∫ ∞

−∞

∂ ln f
∂θ

f (y, θ) dy = 0 because by the chain rule
∂ ln f

∂θ
=

d ln f
d f

∂ f
∂θ

(5)∫ ∞

−∞
f (y, θ)

∂

∂θ

(
yθ − b(θ)

φ
+ c(y, φ)

)
dy = 0∫ ∞

−∞
(y − b′(θ)) f (y, θ) = 0

E Y = b′(θ) (6)

The Variance Of An Exponential Family Distribution

Differentiating equation (5) with respect to θ again gives

∫ ∞

−∞
f (y, θ)

∂2 ln f
∂θ2 +

∂ ln f
∂θ

∂ f
∂θ

dy = 0

∫ ∞

−∞
f (y, θ)

(
∂2 ln y

∂θ2 +
(

∂ ln y
∂θ

)2
)

dy = 0

−b′′(θ)
φ

− var Y
φ2 = 0

var Y = φb′′(θ)
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(29.1.4) Modelling

Consider a random variable Y which is observed at different levels of explanatory random variables X1, X2, . . . , Xc.
The observed data, yj say, has associated explanatory variables observed to be xj1, xj2, . . . , xjc which may be
expressed in vector form as xj.

Suppose Y has an exponential family distribution so that

yi = exp
(

yiθi − bi(θi)
φ

+ ci(yi, φ)
)

Note that b is dependent on i; take for example the Binomial case where E Y = np. The joint probability
density function for the observed data is therefore

f (y, `) = exp

(
1
φ

n

∑
i=1

(yiθi − bi(θi)) +
n

∑
i=1

ci(yi, φ)

)

The model would, essentially, be complete by specifying values for ` but there are far too many θ parameters
to make a sensible model. A distinction is now made between the basic explanatory variables and the
covariates. Explanatory variables are actual observations whereas the covariates are combinations of these,
say x1 = X1X2 etc. (and in due course other things). Unfortunately the same letter, x is used to refer to them
both.

The mess is resolved as follows. Each of the n yi has associated with it a vector of p covariates

xi =
(

1 xi1 xi2 . . . xi(p−1)

)
For each covariate introduce a parameter β so that θi = k(xifi) so there are now only p parameters.

Non-Normal Regression

The function k is not used directly, indeed its practical interpretation is unclear. Recall that in the case of
Normally distributed data, Y ∼ N

(
µ, σ2) a model is specified as µ = xfi and the deviation of datum i from

this is accounted for by the term εi as shown in equation (1).

The non-Normal assumption of generalised linear modelling relates to the distribution of the data—it takes
an exponential family distribution. The linearity in parameters is maintained and the model is specified as

g (bi(θi)) = g(µi)
def= xifi

where g is called the link function. If θi = xifi then the link function is, clearly, the inverse of b. However,
if for example a non-linear parameterisation is required then using θi = ln (xifi) could be used in order to
achieve the necessary linearity.

In principle both the relationship between θi and xifi and the link function are chosen at will to reflect
the practicalities of the model being fitted—an example of where statistical modelling departs from strict
mathematical science. In the most simple case θi = xifi and the link function is the inverse of b; this is called
the natural link. An example of this is the Poisson distribution.

f (y, λ) = exp (y ln λ − λ − ln y!)

giving b(θ) = eθ and θ = ln λ. Hence θi = xifi gives ln λ = xifi. The probability density function has now
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become
f (y, fi) = exp

(
−exifi

) (
exifi
)y 1

y!

From this the likelihood can be calculated and maximum likelihood estimator found for the parameters fi.
However, there is no analytic solution to the maximum likelihood equations.

(29.1.5) Goodness Of Fit

Assessing the accuracy of a model for the obtained data is easy in the case of Normally distributed data
because analytic expressions are available for the estimated parameters and and can be assessed using the
χ2 and F, distributions.

These results do not hold in general, but the availability of likelihoods suggests the use of a Wald test—
likelihood ratio. As the saturated model (with all n parameters) fits the data perfectly it makes sense to
compare against this. Let

˜̀ =
(

θ1 θ2 . . . θn

)
fî =

(
β0 β1 . . . βp−1

)
where in the case of the actual model ` is calculated from fi. Hence

2 ln λ = 2 ln

 L
(
y, ˜̀)

L
(

y, fî
)
 = 2

(
l
(
y, ˜̀)− l

(
y, fî

))

This quantity has an approximate χ2 on n − p degrees of freedom when the model under test is true. This
gives rise to a standard measure of goodness of fit, the defiance.

D (y, fi) = 2φ
(

l
(
y, ˜̀)− l

(
y, fî

))
Now, observing data gives rise to a (maximum likelihood) estimate fî for fi. From this ˆ̀ can be calculated
and b′

(
θ̂i
)

= µi. Also, ˜̀ is completely determined, and b′
(
θ̃i
)

= yi. Now, the likelihood function is given by

L (y, `) =
n

∏
i=1

f (yi, θi) =
n

∏
i=1

exp
(

yiθi − bi(θi)
φ

− c(φ, yi)
)

Hence the deviance is given by

D (y, fi) = 2φ
(

l
(
y, ˜̀)− l

(
y, fî

))
= 2φ

n

∑
i=1

(
yi θ̃i − bi(θ̃i)

φ
− c(φ, yi)−

yi θ̂i − bi(θ̂i)
φ

+ c(φ, yi)

)

= 2
n

∑
i=1

(
yi
(
θ̃i − θ̂i

)
−
(
bi(θ̃i)− bi(θ̂i)

))
This is the exponential family deviance formula and has an approximate χ2

n−p distribution when the model
is true. A common rule of thumb is to reject the model if the deviance lies above the 60% point on its
distribution or below the 1

2 % point. This lower limit is set because if the model fits too well it is likely that
it has too many parameters.
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An alternative measure of goodness of fit is Pearson’s χ2 statistic which may be calculated as

X2 =
n

∑
i=1

(yi − µ̂i)
2

V (µ̂i)

where V is the variance function, V(θ) = b′′(θ). This statistic can be used in another way. The statistic X2

n−p
estimates φ, but if this estimate is not near 1 then the Poisson or Binomial model could be wrong.

Deviance On The Normal Distribution

Reassuringly the deviance is consistent with error assessments for Normal linear regression. For the Normal
distribution

f (y, µ) = exp
(
−y2

2σ2 +
yµ

σ2 − µ2

2σ2 −
1
2

ln
(

2πσ2
))

giving

φ = σ2 θ = µ b(θ) =
θ2

2
Hence use the identity link θ = xiβ and the deviance is then given by

D(y, β) = 2
n

∑
i=1

(
yi
(
θ̃i − θ̂i

)
−
(
bi(θ̃i)− bi(θ̂i)

))
= 2

n

∑
i=1

yi (yi − µ̂i)−
(

y2
i

2
−

µ2
i

2
)

)

=
n

∑
i=1

y2
i − 2yiµ̂i + µ̂2

i

=
n

∑
i=1

(yi − µ̂i)
2

This is the usual residual sum of squares.

Analysis Of Deviance

It is usual to build models sequentially (yielding a sequence of models) by adding in one effect at a time.
‘One effect’ may entail many parameters and every time a new effect is added into the model the deviance
but also the degrees of freedom (of the deviance) decreases. A medium must, therefore, be struck between
explaining deviance and the use of parameters.

Differences in deviance are themselves χ2 distributed, and a good rule of thumb is to reject a more com-
plicated model if the difference in deviance is less than 90% significant on the χ2 distribution for the more
complicated model.

(29.1.6) Categorical Factors & Uses In Model Building

Categorical Factors

Thus far measured covariates have been of concern when explaining deviance. However, besides these one
may also consider categorical factors such as eye colour where yijk = αi + β j + εijk where the subscript k
allows more than one datum in each group∗.

Let A and B be factors with a and b levels respectively. A possible use of these in a sequence of models is

∗Unlike the Normal case there is no requirement to have the same number of data in each group.
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1. Fit A alone, denoted A. In this case gi = µ + αi.

2. Fit A and B, denoted A + B. In this case gij = µ + αi + β j.

3. Fit both A and B and also their interaction, denoted A + B + A.B. In this case gij = µ + αi + β j + (αβ)ij.

A fourth model is also available, called the nested model and denoted A/B or A + A.B. In the interaction
model A + B + A.B the factor B takes the same levels at each level of A. In the nested† model B may take
different levels at different levels of A.

Modelling A Single Factor In Glim

Consider a single factor A with levels A1, A2, . . . , Aa. If there are ni observations at level Ai then the data
may be summarised as shown in Table 29.1.6 where gij may be replaced by µ + αi, say.

A1 A2 . . . Aa
g11 g21 . . . ga1
g12 g22 . . . ga2

...
...

. . .
...

g1n1 g2n2 . . . gana

Table 1: Representation of a single factor.

Such data would be read into Glim with the ys in the first column, say, and indices 1, 2, . . . , a as appropriate
in the second column, corresponding to the level of A of each datum. The factor A is identified by means of
the command $factor A a$. To accommodate this Glim defines the dummy variables u1, u2, . . . , ua such
that uij = 1 whenever yij has level i. The model may therefore be expressed as

g = µ1 + α2u2 + · · ·+ αaua

where α1 = 0 is instead of imposing the constraint ∑a
i=1 αa = 0. This gives rise to the name “starting point”

constraint as opposed to “symmetric” constraint.

A single factor can have useful applications in testing the goodness of fit of a model. Say a number of data
are observed at each level of the covariate x. For each xi introduce a level of a factor A. Fit the model
yi = α + βxi and then add in the group factor using $fit +A$. A χ2 test will determine whether the factor
has an appreciable effect; if it does then the linear model may be insufficient. This is called a pure error lack
of linear fit test, and in a similar way lack of quadratic fit etc. tests can be performed.

Modelling Cross Classified Factors In Glim

For cross classified factors gij = µ + αi + β j which has the notation A + B. In Glim this is represented as

g = µ1 + α2u2 + · · ·+ αaua + β1v1 + · · ·+ βbvb

Using the constraint α1 = 0 and β1 = 0—a corner point parameterisation–gives rise to the scheme shown
in Table 29.1.6.

For input to Glim the data should be in one column with the two factor levels in two other columns. Alter-
natively factor levels can be generated in Glim using the ‘generate levels’ command $calc f=%gl(p,q)$

†Graphically the interaction model is a simple table. The interaction model may be thought of as the same table but
with a block diagonal form.
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A1 A2 . . . Aa
B1 µ µ + α2 . . . µ + αa
B2 µ + β2 µ + α2 + β2 . . . µ + αa + β2
...

...
...

. . .
...

Bb µ + α1 + βb µ + α2 + βb . . . µ + αa + βb

Table 2: Scheme for two cross classified factors.

which produces the numbers 1 to p in blocks of q. Hence for the factors A and B the commands $calc
fa=%gl(a,1)$ and $calc fb=%gl(b,a)$ then $factor fa a : fb b$ could be used.

It is sometimes the case that a particular factor level or coefficient of a covariate should be 1. This can be
achieved using $offset b$ where b is the coefficient to be set to 1.

Modelling Interacting Factors In Glim

The cross classified model may be expanded upon by supposing that at each level of A and of B another
parameter can be added to explain something that happens when the factors interact. The model is therefore

gij = µ + αi + β j + (αβ)ij

It would be usual to impose the symmetric constraints

a

∑
i=1

αi = 0
b

∑
j=1

β j = 0
a

∑
i=1

(αβ)ij = 0
b

∑
j=1

(αβ)ij = 0

However, Glim uses the corner point constraint α1 = β1 = (αβ)1j = (αβ)i1 = 0. Again Glim introduces
dummy variables and this time the model may be expressed as

g = µ1 + α2u2 + · · ·+ αaua + β1v1 + · · ·+ βbvb + (αβ)22u2v2 + · · ·+ (αβ)abuavb

where uiuj in the kth position the product of the kth elements of ui and vj. The effect of this is to ‘switch the
right (αβ) on or off’. An interacting cross classification of two factors may be represented as shown in Table
29.1.6.

A1 A2 . . . Aa
B1 µ µ + α2 . . . µ + αa
B2 µ + β2 µ + α2 + β2 + (αβ)22 . . . µ + αa + β2 + (αβ)a2
...

...
...

. . .
...

Bb µ + α1 + βb µ + α2 + βb(αβ)2b . . . µ + αa + βb + (αβ)ab

Table 3: Scheme for two cross classified factors with interaction.

Such a model can be fitted in Glim using the command $fit A+B+A.B$ which can of course be used to
produce a sequence of models. Alternatively the interaction model can be fitted directly using $fit A*B$.

Modelling Nested Factor Models In Glim

A nested factor model is a little like an interacting cross classified model except that some of the parameters
are not used and the rest are used differently.
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Let A be the first factor and have a levels. At each level of A the factor B takes each of b levels. However,
each of the b levels of B is different under each of the a levels of A.

Example 7 A farmer plants three different varieties of winter barley and plants each variety in two different fields.
When in August the crop is harvested it is of interest as to which variety has yielded better: this is factor A and has
3 levels. However, each variety may be further classified as to having grown in one of two fields: this is factor B and
takes 2 levels for each level of A but for each level of A the two levels of B are different.

The notation for such a model is
gij = µ + αi + (αβ)i/j

and is interpreted to mean that

when i = 1 j = 1, 2, . . . , b1

i = 2 j = b1 + 1, b1 + 2, . . . , b1 + b2

...
...

i = a j = 1 +
a−1

∑
i=1

bi, . . . ,
a

∑
i=1

bi

Note there can be a different number of levels of B under each level of A. Glim uses the dummy variables

u1, u2, . . . , ua and v2, v3, . . . , v∑a
i=1 bi

Observe that unlike the interacting cross classified parameterisation the vector u1 is now used. This gives
the representation

g = µ1 + (α2u2 + α3u3 + · · ·+ αaua)

+ α1u1 · (β2v2 + · · ·+ βb1
vb1

) + . . .

+ αaua ·
(

β∑a−1
i=1 bi

v2+∑a−2
i=1 bi

+ · · ·+ β∑a
i=1 bi

v∑a
i=1 bi

)
In Glim the levels of B under A begin numbering at 1, so under the ith level of A the indices of B will be
1, 2, . . . , bi. This manor is reminiscent of a two way cross classification, but is in fact quite distinct. This
model is fitted in Glim using the command $fit A/B$ or equivalently $fit A+A.B$.

(29.1.7) Fitting Categorical Factors With Covariates

More generally it will be required to fit both categorical factors and continuous covariates. Producing a
regression for each factor will give rise to ‘several straight lines’ and from there it can be assessed whether
the gradients and intercepts are the same or different.

Consider data depending on one covariate and one factor, so it may be summarised as shown in Table 29.1.7.

Issuing the command $factor A 2$ makes Glim define the dummy covariate u2 = (0, 0, . . . , 01, 1, . . . , 1)T

to give linear part g = µ1 + α2u2.

Separate Lines

Perhaps the most general model of this kind is when a separate regression is done for each level of the factor.
However, the error variance quoted is for both regressions: 1 regression fits 2 lines.
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Y X A
y11 x11 1
y12 x12 1

...
...

...
y1n1 x1n1 1
y21 x21 2
y22 x22 2

...
...

...
y2n2 x2n2 2

Table 4: Data for a factor and a covariate.

This is called the separate lines model and can be fitted with the command $fit A*X$which fits the model

g = µ1 + α2u2 + βX + α2u2 · (βX)

or equivalently

y = µ1 + α2u2 + βX + (αβ)2Xu2 + ”

giving y1i = µ + βx1i + ε1i

and y2i = µ + α2 + (β + (αβ)2) x2i + ε2i

Thus, as the name suggests, the lines are separate in so much as they have different gradients and intercepts.

No Interaction

The no interaction model is also called the parallel lines model. It is fitted in Glim with the command $fit

A+X$ giving rise to the representation

y = µ1 + α2u2 + Xβ + ”

so y1i = µ + βx1i + ε1i

and y2i = µ + α2 + βx2i

Nested Interaction

The nested interaction model has common intercepts. It is fitted using the command $fit X/A$ giving
rise to the parameterisation

y = µ1 + βX + (βX) · (α2u2) + ”

= µ1 + βX + (αβ)2u2X + ”

giving y1i = µ + βx1i + ε1i

and y2i = µ + βx2i + (αβ)2x2i + ε2i

It is certainly reassuring that each of the factor parameterisation model have such clear geometrical inter-
pretations.
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(29.2) Computational Estimation Theory

(29.2.1) Maximum Likelihood Estimation

Seeking To Maximise The Likelihood

As might be expected, maximum likelihood is the preferred method for parameter estimation in generalised
linear models. However, the absence of analytic solutions to the derivative of the likelihood makes the
process rather more difficult.

Suppose data y = (y1, y2, . . . , yn) are observed (with covariates xi for each yi) and have associated probabil-
ity density functions

f (yi, θi) = exp
(

yiθi − bi(θi)
φ

− c(yi, φ)
)

with g(µi) = xifi where µi = b′i(θi)

The logarithm of the likelihood is a function of fi and is given by

l(fi, y) =
n

∑
i=1

yiθi − bi(θi)
φ

− c(yi, φ) (8)

Since this is a function of the vector fi vector calculus is now used to ‘differentiate’. Suppose fi is p × 1 then
let

U(fi) =
∂l
∂fi

=


∂l

∂β0

...
∂l

∂fip−1


For maximum likelihood estimation the equation U = 0 must be solved—this corresponds to solving p
equations. Let li be the ith term of equation (8), so by the chain rule for partial differentiation

∂li
∂β j

=
∂li
∂θi

∂θi
∂µi

∂µi
∂β j

These are relatively easy to calculate, and are done so as follows

∂li
∂θi

=
yi − b′i(θi)

φ
=

yi − µi
φ

∂µi
∂θi

= b′′i (θi) =
var Yi

φ

∂µi
∂β j

=
∂µi
∂gi

∂gi
∂β j

=
∂(xifi)

∂β j
g∗ = xijg∗i where g∗i =

1
∂gi
∂µi

hence
∂li
∂β j

=
yi − µi

φ

φ

var Yi
xijg∗i

=
(yi − µi)xij

var Yi
g∗i
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This is the ith term of the log likelihood sum for the jth element of U. Hence

∂li
∂fi

=
(yi − µi)xT

i
var Yi

g∗i

giving U(fi) =
∂l
∂fi

=
n

∑
i=1

(yi − µi)xT
i

var Yi
g∗i

=
(

xT
1 xT

2 . . . xT
n

)
(y1−µi)
var Y1

g∗1
...

(yn−µi)
var Yn

g∗n


= XTWffi (9)

where (X)ij = xij (W)ii =
(g∗i )2

var Yi
δi = (yi − µi)

1
g∗i

Note the off diagonal entries of W are zero. U(fi) is called the score vector for fi and must now be solved
equated to the zero vector. However, the equations are not linear and must be solved numerically or by
some iterative process.

The Information Matrix

The information matrix is of use, not least to shorten many expressions. As usual

I(fi) = −E

(
∂2l

∂fi∂fiT

)
which can be shown in the usual way. Using equation (9) the expression for the information matrix becomes

I(fi) = E

(
∂l
∂β

· ∂l
∂fiT

)
= E

(
UUT

)
= E

(
XTWffiffiTWX

)
noting that W = WT . The only random variable in this expression is vtrδ, so that E (ffiffiT) is of interest.

E
(

ffiffiT
)

=

E
(
(yi − µi)2(g∗i )2) for diagonal terms

E
(

(yi − µi)(yj − µj)g∗i g∗j
)

for off diagonal terms

=


(

g∗i
)2 var Yi for diagonal terms

0 for off diagonal terms, by independence

Hence E (ffiffiT) = W−1 so that
I(fi) = XTWW−1WX = XTWX

The information matrix gives, asymptotically, the variances of the estimate fî of fi by var fî ≈ I−1(fî). These
values are given by Glim for the variance estimates of the parameters.

Scoring

At last the equation U(fi) = 0 is solved. This is done using a vector form of the Newton-Raphson‡ approxi-
mation method.

‡Newton-Raphson solves the equation f (x) = 0 starting at x0 by approximating f (x) by the straight line with gradient
f ′(x0) that intercepts f at (x0, f (x0)) and estimating the root of f by where this straight line intercepts the x axis, x1. The
process is then repeated from x1.
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Let fî(1) be the first estimate for fi. Perform a Taylor expansion of U(fi) gives

∂l
∂fi

=
∂l(fî(1))

∂fi
+
(

fi− fî(1)

) ∂2l(fî(1))

∂fi∂fiT + . . .

Using only these first two terms,

fi− fî(1) =

(
−

∂2l(fî(1))

∂fi∂fiT

)
∂l(fî(1))

∂fi

so fî(m) = fî(m−1)

(
−

∂2l(fî(m−1))

∂fi∂fiT

)
∂l(fî(m−1))

∂fi

The method of scoring, or statistical modification, is to replace the second order partial derivative in the
iteration equation with the expected information matrix evaluated at fî(m−1). Hence

fî(m) = fî(m−1) + I−1
(

fî(m−1)

) ∂l(fî(m−1))
∂fi

I
(

fî(m−1)

)
fî(m) = I

(
fî(m−1)

)
fî(m−1) + U

(
fî(m−1)

)
(

XTW(m−1)X
)

fî(m) =
(

XTW(m−1)X
)

fî(m−1) + XTW(m−1)ffi

= XTW(m−1)Z(m−1) (10)

where Z(m−1) = Xfî(m−1) + ffi(m−1)

Quite why this equation is useful will become apparent in the next section.

(29.2.2) Weighted Least Squares Estimation

Weighted Least Squares

Weighted least squares is much the same as normal least squares, but with the obvious expectation that the
terms in the sum are weighted, hence

l(fi) =
n

∑
i=1

wi(yi − xifi)2

is the quantity to be minimised. Using matrix and vector notation this may be written as l(fi) = (y −
Xfi)TW(y− Xfi). Now using the vector differentiation results

∂fiT

∂fi
= I and

∂

∂fi

(
aTWa

)
= 2

∂aT

∂fi
Wa

on the vector representation of the sum of squares gives

∂l(fi)
∂fi

= 2XTW(y− Xfi)

so that at the minimum

2XTW(y− Xfi) = 0

or equivalently 2XTWy = 2XTWXfi

or equivalently XTWffi(fi) = 0 (11)

where ffi(fi) = y− Xfi
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Equation (11) has the same form as equation (9) except the choice of ffi admits the analytic solution

fî =
(

XTWX
)−1

XTWy

Observe that putting W = In gives the usual maximum likelihood estimate, as is shown in Chapter ?? on
general linear modelling. Similarly the proper generalisation of the estimates for the variance-covariance
matrix of the parameters is σ2(XTWX)−1 and σ2 is estimated as

1
n − p

(
(y− Xfi)TW(y− Xfi)

)

Using least squares no mention of the exponential family of distributions has been made. The least squares
method may therefore be used when the exponential family assumption is not true. However, equations
(11) and (9) having the same form means that least squares will give the maximum likelihood estimate
under the exponential family assumption. This is important when modelling strays from the exponential
distribution, as is discussed in Section 29.2.3.

Interpreting Weighted Least Squares Estimation

Return now to consider the maximum likelihood estimation process and in particular equation (11) where

Z(m−1) = Xfî(m−1) + ffi(m−1) and δi = (yi − µi)
∂gi
∂µi

Consider now a Taylor expansion of the link function about µ so

g(y) ≈ g(µ) + (y − µ)
∂g
∂µ

from which the variance may be calculated as

var (g(Y)) =
(

∂g
∂µ

)2
var Y

This is the inverse of the weighting elements of W, and it should be noted that this is not constant.

(29.2.3) Dispersion

(29.3) Model Building And Assessment

Model Building

Model building is more of an art than a science, many of the decisions being down to experience and
judgement. Which explanatory variables or factors to use and which are most important is the first decision
to make, and as to how they are to be fitted: which will interact etc. Some rules of thumb have already been
mentioned.

1. A reasonable model should have deviance greater than 1
2 % and 60% on the corresponding χ2 distri-

bution.

2. The current model is likely to be under fitted (not enough parameters) if the deviance is above the
90% point on the corresponding χ2 distribution.
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3. If adding a parameter causes a decrease in deviance of less than 10% on the corresponding χ2 distri-
bution then that parameter may not be necessary.

4. If removing a parameter causes in increase in deviance of more than 90% on the corresponding χ2

distribution then that parameter is likely to have an important effect.

However, if different combinations of covariates are used then the change in deviance when effects are
added and removed will change. This is why it is important to judge the relative importance of the covari-
ates and fit the most important ones first.

There is also some choice in what link function to use. It is usual to use θi = xifi and deduce the link
function, but if it is preferable to multiply parameters together (rather than add) then a logarithm will have
to be taken giving ln θi = xifi.

At all times it should be remembered that as few parameters as possible should be used. As fitting cate-
gorical factors is very heavy on the use of parameters it may be feasible to combine some of the levels or
to convert the category to a continuous covariate e.g. age may be represented by a covariate rather than
categories.

Goodness Of Fit Using Pearson’s χ2 Statistic

An alternative to deviance when assessing the goodness of fit of a model is Pearson’s generalised X2 statistic

X2 =
N

∑
i=1

(yi − µ̂i)2

V(µ̂i)

where V(µ̂i) is the estimate of the variance function of the exponential family distribution under consider-
ation, i.e. the estimate of var Yi = φb′′i (θi). This statistic has an approximate χ2 distribution with the same
degrees of freedom as would have the deviance. The scale parameter φ can be estimated by X2

d f rather than
using the deviance.

Assessing Residuals

For generalised linear modelling there is no particularly clear definition to take for residuals. The Pearson
residuals are used, being calculated as

ri =
yi − µ̂i√

V(µ̂i

These are stored in Glim after fitting a model in the variable %rs. These can be displayed using $display

r$ and as a rough check a good model should have the residuals in the range ( − 2, 2), working from a
Normal assumption.

(29.3.1) Problems Using Deviance For Binomial Regression

For the Binomial distribution

f (x, p) =
(

n
p

)
px(1− p)n−x = exp

(
x ln

(
p

1− p

)
+ n ln (1− p) + ln

(
n
p

))
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so that

θ∗ = ln
(

p
1− p

)
(1− p)eθ = eθ

eθ = p(1 + eθ)

p =
eθ

1 + eθ

Hence an expression for b(θ) can be found,

b(θ) = −n ln (1− p) = n (θ − ln p) = nθ − nθ + n ln (1 + eθ) = n ln (1 + eθ)

The canonical link is chosen which gives θi = xifi. The actual link function is g(µi) such that g(µi) = xifi.
Now, µi = b′(θi).

b(θi) = n ln (1 + eθi )

so b′(θi) =
neθi

1 + eθi

= np

Hence since xifi = θi = ln
(

pi
1−pi

)
this gives

g(µi) = ln

(
µi
n

1− µi
n

)

Consider the k parameter model where fi and x are used to generate the n θ parameters. In the k param-
eter case say ˆ̀ =

(
θ̂1 θ̂2 . . . θ̂n

)
while the saturated model where all n parameters are used has the

parameters ˜̀ =
(

θ̃1 θ̃2 . . . θ̃n

)
. The deviance would then be calculated by the equation

D = 2
n

∑
i=1

yi(θ̂i − θ̃i) + b(θ̂i)− b(θ̃i)

= −2
n

∑
i=1

(29.4) Contingency Table Frequency Data

(29.4.1) Cross Classified Categorical Response Variables

Description

Thus far the response variables have always been continuous quantities. This is frequently not the case,
where the response is categorical, and may depend on categorical covariates. An example is shown in Table
29.4.1, note that any of the three categories could be treat as the response and in fact more than 1 category
could be treat as the response.

Modelling Two Categories

First of all consider only 2 categories. Here, as in all cases, the multinomial distribution will be used to assign
probabilities of an observation being in a particular cell of the frequency table. Let pij be the probability



29.4. CONTINGENCY TABLE FREQUENCY DATA 17

Adversity of school conditions Low Medium High
Home conditions Bad Good Bad Good Bad Good

Normal 16 7 15 34 5 3
Deviant 1 1 3 8 1 3

Table 5: Classroom behavior data of school children.

that an observation falls into the ith level of category A and the jth level of category B. Suppose that n
observations are made then the number of observations in each cell, nij is of interest. This is modelled by
the random variable Nij which has joint distribution function

Pr
{

Nij = nij ∀i ∀j | n
}

=
n!

∏a
i=1 ∏b

j=1 nij!

a

∏
i=1

b

∏
j=1

p
nij

ij with
a

∑
i=1

b

∑
j=1

pij = 1 (12)

For the purposes of modelling structure must be given to the pij to reduce the number of parameters from
ab to something more manageable. Let

pij =
µij

∑a
i=1 ∑b

j=1 µij

then certainly they sum to 1. The means are now parameterised in a log linear way, similar to the Poisson
regression case. This is explained in Section 29.4.2. So

ln µij = φ + xijfi

A particular model of much importance uses

ln µij = φ + αi + β j

hence

pij =
eαi+β j

∑a
i=1 ∑b

j=1 eαi+β j

=
eαi

∑a
i=1 eαi

eβ j

∑b
j=1 eβ j

So pij = pi pj showing that in this parameterisation A and B are independent. Returning to generality

pij =
eφ+xijfi

∑a
i=1 ∑b

j=1 eφ+xijfi

=
exijfi

∑a
i=1 ∑b

j=1 exijfi
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Conveniently the φ has cancelled out. To estimate fi maximum likelihood is used.

L = Pr
{

Nij = nij ∀i ∀j | n
}

=
n!

∏a
i=1 ∏b

j=1 nij!

a

∏
i=1

b

∏
j=1

p
nij

ij

l = ln n! −
a

∑
i=1

b

∑
j=1

ln nij +
a

∑
i=1

b

∑
j=1

nij

xijfi− ln

 a

∑
i=1

b

∑
j=1

exijfi


= ln n! −

a

∑
i=1

b

∑
j=1

ln nij +
a

∑
i=1

b

∑
j=1

nijxijfi− n ln

 a

∑
i=1

b

∑
j=1

exijfi

 (13)

This needs to be minimised, which must be done numerically. Conveniently this too is independent of φ.

As already seen the form of xijfi determines the joint distribution of the category variables.

(29.4.2) Tricking Glim

Glim cannot perform the required calculations for such frequency table data. However, it can be tricked
into doing it. Discarding the multinomial distribution, assume that each nij has an independent Poisson
distribution with mean µij. The likelihood (corresponding to equation 12) is then

L(¯) =
a

∏
i=1

b

∏
j=1

e−µij µ
nij

ij

nij!

l(¯) =
a

∑
i=1

b

∑
j=1

nij ln µij − µij + ln nij!

Now put ln µij = φ + xijfi and continue

=
a

∑
i=1

b

∑
j=1

nijφ + xijfi− eφ+xijfi + ln nij!

Now, φ is not a particularly appropriate parameter. Reparameterise therefore using τ = ∑a
i=1 ∑b

j=1 eφ+xijfi

so that φ = ln τ − ln
(

∑a
i=1 ∑b

j=1 exijfi
)

=

ln τ − ln

 a

∑
i=1

b

∑
j=1

exijfi

 a

∑
i=1

b

∑
j=1

nij −
a

∑
i=1

b

∑
j=1

nijxijfi− τ

= n ln τ − τ − n ln

 a

∑
i=1

b

∑
j=1

exijfi

+
a

∑
i=1

b

∑
j=1

nijxijfi

However, the expression in fi here is the same as in the multinomial log likelihood, equation (13). Moreover,
when differentiated with respect to fi both equations will be identical, giving the same estimate for fi. The
estimate of τ is easy to calculate as it is independent of fi, τ̂ = n. However, this is of little interest as the
analysis given is conditional on n.

From the Poisson point of view the situation now arisen is to model random variables Nij each with a mean
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µij but conditional on their sum being n. Since the Nij random variables are independent this gives

Pr

Nij = nij ∀i ∀j |
a

∑
i=1

b

∑
j=1

Nij = n

 =
∏a

i=1 ∏a
j=1

e−µij µ
nij
ij

nij !

1
n! exp

(
−∑a

i=1 ∑b
j=1 µij

) (
∑a

i=1 ∑b
j=1 µij

)n

=
n!

∏a
i=1 ∏a

j=1 nij!

a

∏
i=1

a

∏
j=1

(
µij

∑a
i=1 ∑b

j=1 µij

)nij

which is the same as equation (12) with the chosen parameterisation i.e. the parameterisation was chosen
so that this Poisson methodology could be applied hence allowing analysis in Glim.

Glim can be tricked into maximising the multinomial likelihood by setting $error p$ and using $yvar

nij$. The factors can then be fitted in the usual way.

(29.4.3) Parametric Structures For Two Dimensional Tables

As already discussed ln µij = φ + αi + β j gives a model in which the A and B categories are independent
which is deduced by showing the joint distribution to be the product of the marginal distributions. For the
record the marginal distributions may be found from pij as follows

pi =
b

∑
j=1

pij

=
b

∑
j=1

µij

∑a
i=1 ∑b

j=1 µij

=
eαi ∑b

j=1 eβ j

∑a
i=1 ∑b

j=1 µij

=
eαi

∑a
i=1 eαi

similarly pj =
eβ j

∑b
j=1 eβ j

(29.4.4) Parametric Structures For Three Dimensional Tables

(29.4.5) Full Independence

If the effects A, B, and C are all independent, written A ⊥ B ⊥ C then

pijk = Pr {A = i} × Pr {B = j} × Pr {C = k}

giving rise to the parameterisation
ln µijk = φ + αi + β j + γk
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Joint Independence

In the joint independence model the joint distribution of A and B is independent of the distribution of C.
This is written (A, B) ⊥ C. Hence

Pr {A = i, B = j | C = k} = Pr {A = i, B = j}

so Pr {A = i, B = j, C = k} = Pr {A = i, B = j} × Pr {C = k}

suggesting ln µijk = φ + αi + β j + γk + (αβ)ij

In this model there are two marginal distributions, one is the distribution of C and the other is the joint
distribution of (A, B).

pij =
c

∑
k=1

exp
(

φ + αi + β j + γk + (αβ)ij

)
∑a

i=1 ∑b
j=1 exp

(
φ + αi + β j + (αβ)ij

)
∑c

k=1 eγk

=
eφ+αi+β j+(αβ)ij

∑a
i=1 ∑b

j=1 eφ+αi+β j+(αβ)ij

Hence the marginal distribution for (A, B) has ln µij = φ + αi + β j + (αβ)ij. Summing over i and j to obtain
the marginal distribution of C gives

pk =
eγk

∑c
k=1 eγk

Now the distribution of (A, B) conditional on C can be found

pij|K =
pijk

pk

=
eφ+αi+β j+(αβ)ij

∑a
i=1 ∑b

j=1 eφ+αi+β j+(αβ)ij

So the same model as for the marginal distribution of (A, B) is used. This gives pij|k = pij showing that
(A, B) is independent of C (which was known) so this model is correct.

The independence with C means that the (A, C) and (B, C) marginal distributions will both indicate some
kind of independence relationship. However, in the case of (A, C), pik 6= pik|j

Conditional Independence

In this model A and B are independent but are conditioned on C. This is written (A ⊥ B)|C or equivalently
(A|C) ⊥ (B|C) giving

Pr {A = i, B = j | C = k} = Pr {A = i | C = k} × Pr {B = j | C = k}

so Pr {A = i, B = j, C = k} = Pr {A = i | C = k} × Pr {B = j | C = k} × Pr {C = k}

=
Pr {A = i, C = k} × Pr {B = j, C = k}

Pr {C = k}
suggesting ln µijk = φ + αi + β j + γk + (αγ)ik + (βγ)jk


