
Chapter 28

MSMYS2 Time Series And Forecasting

(28.1) Analysis Over Time

(28.1.1) Time Series & Trends

Much of statistical theory is concerned with independent and identically distributed random variables.
What happens when this is not the case is, essentially, the subject of this chapter. Take for example the
price of a stock: one expects the price tomorrow to be similar to that today, and that perhaps from the past
predictions about the future can be made.

Perhaps the most prominent feature of time series data is an ‘overall trend’, closely followed by cyclicity.
These become apparent when data is plotted, and plotting data is advisable as it can be very revealing. Some
trends are ‘fake’, that is they arise randomly, perhaps to the variance of the data increasing over time—this
would suggest divergence from a central level. Other trends are not, and these can be modeled with a
function of the form Y(t) = µ(t) + X(t) where µ represents the trend and X is a stochastic process.

The lack of independence of the data means that it is somehow dependent on itself. Whereas two random
variables may be correlated in the ordinary sense it should not now come as much of a surprise that for a
time series the data is correlated with itself.

Definition 1 For a time series Y(t) define the autocovariance function

γ(s, t) = E (Y(s)−E Y(s)) (Y(t)−E Y(t))

and the autocorrelation function

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)

Definition 2 Let Y(y) be a time series. Y(t) is stationary if

Y(t1 + s) = Y(t2 + s) = · · · = Y(tm + s)

for all m. The process is said to be second order stationary if

γ(s, t) = F(|t− s|) or equivalently γ(t, t + k) = F(|k|)

As stationarity cannot usually be verified the second order stationarity definition is usually used. This
definition means that the autocovariance is a function only of ‘the gap’.

Returning to the model Y(t) = µ(t) + X(t) it is clear that X should be a stationary process such as a Normal
random variable with mean 0 and variance σ2

t . When working with dependent random variables it is
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usually fairly easy to calculate means. However, for variances recall that

var XY = var X + var Y − 2 cov (X, Y)

Smoothing Data

In order to observe trends in data it is advantageous to ‘smooth’ the data, in the hope of removing local
variations and revealing global variations. A smooth line through the data may be plotted with the aid of a
moving average.

Definition 3 Let y1, y2, . . . , yn be observations then

st =
p

∑
j=−p

wjyt+j

where t takes values p + 1, p + 2, . . . , n − p is said to be a moving average of order 2p + 1. Usually wj > 0∀j and

∑j wj = 1.

If a moving average is calculated with order equal to a seasonal period then cyclicity in the data will be
smoothed out.

Another method to smooth data is differencing. This is usually represented in terms of the differencing
operator D where

Dyt = yt − yt−1 and D2yt = D(yt − yt−1) = yt − 2yt−1 + yt−2

Plotting differences will make apparent when a stationary process is reached, and at most D2 tends to
suffice.

Processes

As usual linearity is highly desirable. A general linear process may be expressed in the form

Y(t) = εt + ψ1εt−1 + ψ2εt−2 + . . .

where ψ0 = 1 and εi ∼ N
(
0, σ2) are independent. Calculating the variance of this,

var Y(t) = σ2
∞

∑
i=1

ψi

so it is necessary for this sum to converge for a linear process. Absolute convergence is also required. A
useful choice for the ψs is, say ψj = φj for some |φ| < 1, so the distant past has much less effect on the value
if Y(t) than the recent past.

Definition 4 Let εi ∼ N
(
0, σ2) be independent, then the moving average process Y ∼ MA (q) is defined as

Y(t) = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

which is a stationary process.

Definition 5 Let εi ∼ N
(
0, σ2) be independent, then the autoregressive process Y ∼ AR (p) is defined as

Y(t) = φ1yt−1 + φ2yt−1 + · · ·+ φpyt−p + εt
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An autoregressive process is not necessarily stationary. It is of interest, therefore, as to under what condi-
tions such a process is stationary. If E Yt−j = 0 for all j > 1 then clearly the process is stationary, but of
course this is not generally the case. In the case of an AR (1) process

yt = φyt−1 + εt

= φ (φyt−2 + εt−1) + εt by substituting for yt−1

=
J−1

∑
j=0

φjεt−j + φJyt−J

Hence when |φ| < 1 E Yt → 0 as J → ∞ because all the εs have mean 0. In the general case

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt

E Yt = φ1 E yt−1 + φ2 E yt−2 + · · ·+ φp E yt−p

µt − φ1µt−1 − · · · − φpµt−p = 0

where µi = E Yi. This last equation is a difference equation∗ Looking for solutions of the form µi = Axi

where A is some constant gives

Axt − Aφ1xt−1 − · · · − Aφpxt−p = 0

Axt−p
(

xp + φ1xp−1 − · · · − φp

)
= 0

This yields a characteristic polynomial the solutions to which, m1, m2, . . . , mp, determine the solutions for
the various values of µ for example µt = A1mt

1 + A2mt
2 + · · ·+ Apmt

p. In the case of a repeated m1 = m2

use
µt = (A1 + A2t)mt

1

In the case of complex roots m1 = α + iβ and m2 = α− iβ use

µt = A1(α + iβ)t + A2(α− iβ)t

= rtC cos (θt + D)

Whatever roots are found it is clear that if all roots lie within the unit circle in the Argand plane then µt → 0
as t → ∞. Hence a condition for stationarity has been determined.

Definition 6 The lag operator (or backward shift operator) L has the effect Lyt = yt−1 and hence Lkyt = yt−k. The
operator L−1 is called the lead operator (or forward shift operator) and has the effect L−1yt = yt+1.

Use of the lag operator can much simplify the expression of processes. While the autoregressive and moving
average processes are useful they may be combined to form an ARMA (p, q) process. If yt ∼ ARMA (p, q)
then

yt = φ1yt−1 + · · ·+ φpyt−p + εt + θ1εt−1 + · · ·+ θqεt−q

Using the lag operator this may be written as

φ(L)yt = θ(L)εt

where φ(L) = 1− φ1L− φ2L2 − · · · − φpLp

and θ(L) = 1 + θ1L + θ2L2 + · · ·+ θqLq

∗Difference equations behave rather like ordinary differential equations with constant coefficients.
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The polynomials φ and θ are called the associated polynomials.

Similar to the autoregressive moving average process is the autoregressive integrated moving average pro-
cess, ARMA (p, d, q). This is defined by

φ(L)Ddyt = θ(L)εt

where D = 1− L is the difference operator.

Consider now an AR (p) process, φ(L)yt = εt. If φ could be inverted this could be expressed as an infinite
moving average process yt = ψ(L)εt, say. Using this

yt = ψ(L)εt

φ(L)yt = φ(L)ψ(L)εt

from which it must be the case that φ(L)ψ(L) = 1. This method as avoided the issue of the existence of
φ−1(L), though if it does exist is is easy to construct a circular argument.

Invertability

Thus far processes have been presented and their autocorrelation and autocovariance calculated. In reality
it is more usual to receive data and then to ask “what process is this”. The estimation of parameters is
discussed in Section 28.2.

It is important, therefore, that given a sample autocorrelation and an MA (1) process different people should
infer the same value for θ1. Consider the MA (1) processes

Yt = εt + θεt−1 Xt = εt +
1
θ

εti1

These processes may now be ‘inverted’ to give

εt =
Yt

1 + θL
= 1− θLYt + θ2L2Yt − . . .

εt =
Xt

1 + 1
θ L

= 1− 1
θ

LXt +
1
θ2 L2Xt − . . .

Assuming stationarity and that E Yt = 0 the autocovariance and autocorrelation functions for the process
in Yt can now be found.

γ(0) = var Yt = (1 + θ2)σ2

γ(1) = cov (Yt, Yt−1) = E (YtYt−1) = E
(

εtεt−1 + θε2
t−1 + θεtεt−2 + θ2εt−1εt−2

)
= θσ2

γ(k) = 0 for k > 2

Dividing by γ(0) now gives

ρ(0) = 1 ρ(1) =
θ

1 + θ2

with ρ(k) = 0 for k > 2. However, if θ is replaced by 1
θ the expression for ρ is unaltered. Now, suppose

that ρ̂(1) is a sample autocorrelation. The equation ρ(1) can then be solved for θ, and is a quadratic hence
yielding two solutions θ̂1 and θ̂2, but which of these is correct? In some special cases the roots may be the
reciprocal of eachother in which case it doesn’t matter, but this is not generally the case. In order to resolve
this take by definition |θ| < 1 so that the sequence expansion for Yt is convergent (and hence the process is
invertible).
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(28.1.2) Autocovariance And Autocorrelation For Processes

Moving Average Processes

A moving average process MA (q) is defined by

yt = εt + θ1εt−1 + · · ·+ θqεt−q

the autocovariance of this can be calculated as follows

γ(k) = E (Yt −E Yt) (Yt+k −E Yt+k)

= E YtYt+k but cov (X, Z) = E (XZ)−E X E Z

= cov (Yt, Yt+k)

Now,
yt−k = εt−k + θ1εt−k−1 + θ2εt−k−2 + · · ·+ εt−k−q

Since E θiθj = σ2 this gives

γ(k) =

σ2 ∑
q−k
i=1 θiθi+k if k 6 q

0 if k > q
(7)

Hence the autocorrelation, ρ(k) = γ(k)
γ(0) , is zero for k > q which should be noted when viewing plots of

sample autocorrelation, and such a feature may suggest the use of a moving average model.

Autoregressive Processes

An autoregressive process AR (p) is defined by

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt

Stationarity is assumed and without further loss of generality assume E Yi = 0 for all i. By the independence
of εi, E Ytεt = E ε2

t = σ2. Hence γ(k) = E YtYt−k. Now,

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt now multiply by yt−k

ytyt−k = φ1yt−1yt−k + φ2yt−2yt−k + · · ·+ φpyt−pyt−k + εtyt−k now take expected values

γ(k) = φ1γ(k− 1) + φ2γ(k− 2) + · · ·+ φpγ(k− p)

Now, var Yt = E (Y2
t )− (E Yt)2 and since E Yt = 0 this gives var Yt = γ(0). Assuming this is not zero the

autocovariance function can be divided by it for all values of k to give

1 = φ1ρ1 + φ2ρ2 + · · ·+ φpρp

ρ(1) = φ1 + φ2ρ(1) + φ3ρ(2) + · · ·+ φpρp−1

ρ(2) = φ1ρ(1) + φ2 + φ3ρ(1) + · · ·+ φpρ(p− 2)

ρ(3) = φ1ρ2 + φ1ρ1 + φ3 + φ4ρ1 + · · ·+ φpρp−3

...

ρ(p) = φ1ρ(p− 1) + φ2ρ(p− 2) + · · ·+ φp

(8)

These are the Yule-Walker equations, with the exception of the first. These p equations in p unknowns (the
φs) can be used to estimate the values of φ from sample autocorrelations ρ̂i. Alternatively the autocorrela-
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tions of a known autoregressive process could be found. In matrix form they may be expressed as

æ = Œ + Φæ or Œ = (I −Φ)−1æ

Besides using linear algebra the kth Yule-Walker equation can also be solved as difference equation allowing
any of the equations to be calculated without knowing the others. In

ρ(k) = φ1ρ(k− 1) + φ2ρ(k− 2) + · · ·+ φpρ(k− p) (9)

put ρ(k) = Ac|k| to give a pth order polynomial in c identical to the characteristic equation.

At this point attention is drawn to the difference between the characteristic equation and φ(L). The way the
characteristic equation is constructed means that if

φL = φ1L + φ2L2 + · · ·+ φpLp

then the characteristic equation is
φ1xp + φ2xp−1 + · · ·+ φp

The roots to these equations are closely related: they are reciprocals.

Solving the characteristic equation gives values for c so that

ρ(k) =
p

∑
i=1

Aic
|k|
i

Using k = 0 gives ∑
p
i=1 Ai = 1 = ρ(0). Now, as the Yule-Walker equations are known equation (9) can be

substituted into them and hence the Ais determined. Hence when the unknown constants in equation (9)
are found it is possible to find any of the autocorrelations.

Autoregressive Moving Average Processes

Generally an ARMA (p, q) process is of the form φ(L)yt = θ(L)εt and has rather a lot of parameters. It
is worth noting that should φ and θ have a common linear factor then it can be cancelled to give an
ARMA (p− 1, q− 1) process.

Autocovariance

Given the involvement of polynomials it should come as little surprise that a generating function for auto-
covariance may be useful. Since an autoregressive process has an infinite moving average process represen-
tation it is sufficient to consider such representations and in doing so cover general ARMA (p, q) processes.

Theorem 10 Where g(L) =
∞

∑
k=−∞

γ(k)Lk, g(L) = ψ(L)ψ(L−1)σ2.
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Proof. Extending equation (7) to an infinite moving average process;

γ(k) = σ2
∞

∑
j=0

ψjψj+k

so g(L) = σ2
∞

∑
−∞

∞

∑
j=0

ψjψj+k Lk

= σ2
∞

∑
j=0

∞

∑
k=−j

ψjψj+k Lk because ψj = 0 for j < 0

= σ2
∞

∑
j=0

∞

∑
j=0

∞

∑
l=0

ψjψl L
l−j wherel = k + j

= σ2

 ∞

∑
j=0

ψjL−j

( ∞

∑
l=0

ψjLl

)

σ2ψ(L)ψ(L−1) �

(28.2) Parameter Estimation

(28.2.1) Effect Of Dependence

Estimating Mean And Variance

It is usual to estimate the mean and variance of a distribution with the estimators

µ̂ = y and s2 =
1

n− 1

n

∑
i=1

(yi − y)2

However, when the assumption of independence is removed the variance estimate may become very inac-
curate because of the covariance structure of dependent random variables.

Suppose that Y1, Y2, . . . , Yn are not independent, then E Y = µ still holds and so can be estimated by the
sample mean. However, for the variance,

var Y = var

(
1
n

n

∑
i=1

Yi

)

=
1

n2

n

∑
i=1

n

∑
j=1

cov
(

Yi, Yj

)

=
1

n2

(
2σ2 + 2σ2

n−1

∑
k=i

(n− k)ρk

)
recalling that ρ(Yi, Yj) =

cov
(

Yi, Yj

)
√

( var Yi)( var Yj)

The summation term here may make the variance of Y much larger, or perhaps much smaller, than σ2

n ,
so clearly s2 cannot be used as an estimator. The size of this change is dependent on the autocorrelation
function, ρk.

Calculating the variance in practise is just a case of substituting in some numbers. For example the MA (1)
process

yt = εt −
1
2

εt−1
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gives autocorrelation function

γ(k) =

 5
4 σ2 if k = 0
−1
2 σ2 if |k| = 1

so ρ1 =
γ(1)√

γ(0)γ(0)
=
−2
5

All other values of the autocorrelation are zero as γ(k) = 0 for |k| > 2. Hence substituting

var Y =
1

n2

(
nσ2 + 2σ2−2(n− 1)

5

)
≈ 3σ2

5n
by using

n− 1
n

≈ 1

Similarly for an AR (1) process, yt = φyt−1 + εt the autocovariances are given by ρk = φ|k|

Sample Autocovariance & Autocorrelation

Besides estimating the mean and variance the autocovariance can be estimated by

γ∗(k) =
1

n− k

n−k

∑
t=0

(yk+t − µ)(yt − µ)

Replacing µ by its estimate, y, produces a small bias which tends to zero as n increases. A different estimator
is

c(k) =
1
n

1
n

n−k

∑
t=0

(yk+t − y)(yt − y)

This has a smaller mean square error and is easier to calculate due to the simpler factor. Now, as k increases
there are less and less data from which the autocovariance estimate can be calculated. For values of k that
are near n the estimate is, therefore, very inaccurate. Furthermore, assessing such an estimator by calcu-
lating its variance is a rather unwieldy process, involving the expected value of a ratio. While asymptotic
approximations may be found this is still, essentially, a job for a computer.

Having observed data the objective is to find a suitable model. Instantly this suggests the use of a hypothesis
test. The null hypothesis is that the data are independent, and there is no time series structure. The sample
autocorrelation, rk = c(k)

c(0) can be used for this. The expected value of rk is approximately zero, and the

variance is approximately 1
n . The interval

(
−1√

n , 1√
n

)
is an approximate 95% confidence interval, and so

values of rk lying outside this are sought.

Testing For Randomness

In conducting hypothesis tests for independence it is important to remember that while independence im-
plies (theoretical) uncorrelation, the reverse implication is not true. Nothing can be deduced, therefore, if
such a hypothesis test does not reject the null hypothesis.

It is usual to test using r0 as any model is likely to have a high correlation with the first of past observations.
Choosing to test at other lags suggests at least part of the model is already known, though: under what
justification does one test r4, say, if the model is unknown?
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The Van-Neumann Ratio

The Van-Neumann ration is defined as

VNR =
n

n− 1
∑n

k=2 (yk − yk−1)2

∑n
k=1 (yk − y)2 ≈ 2(1− r1) (11)

From the approximation observe that

VNR → 2 as r1 → 0 VNR → 0+ as ri → 1− VNR → 4− as r1 → −1−

From this a number of tests may be devised.

• Testing for positive correlation. Take as the null hypothesis that the data are independent. The alter-
native is positive correlation, so reject if the statistic is small.

• Testing for negative correlation. Take as the null hypothesis that the data are independent. The
alternative is negative correlation, so reject if the statistic is large.

The reasoning for this test is made clear by looking at the graph of the approximate van Neumann ratio.
Note that for large values of n the ratio has an approximate

N
(

2n
n− 1

,
4
n

)
distribution.

The Portmanteau Test Statistic

The more general Portmanteau test was proposed by Box and Pierce in 1970 and can be used to test whether
sample autocorrelations are non-zero. For an ARMA (p, d, q) model the statistic is

Q = (n− d)
k

∑
i=1

r2
i

where ri is the ith sample autocorrelation. This statistic was thought to have a χ2
k−p−q distribution, becoming

large when the model is inappropriate. However, it is not very powerful and a better Portmanteau statistic
is

Q∗ = n(n + 2)
k

∑
i=1

r2
i

n− k

which is larger than Q (suggesting the power of the test is greater).

The Portmanteau test uses autocorrelations to test whether the sample is nothing more than noise. If some
of the autocorrelations are high then the sample may have some structure and the Portmanteau statistic will
be large. It may be useful to consider many Portmanteau statistics, summing to 12, then to 24, etc. However,
if the first 12 are tested and a conclusion drawn the test for the first 24 must surely be somehow conditional.
Nevertheless, such tests are common.

(28.2.2) Estimating Parameters

Once the form of a model has been decided upon, the next stage is to estimate the parameters of the model.
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Moments

The method of moments† for parameter estimation simply estimates moments by the sample moments.
For an AR (p) process there are the p values for φ to estimate, and the variance of the innovation, σ2. The
Yule-Walker equations (equations (8)) provide a method by which suitable estimates may be found. The
equations æ = Œ + Φæ can be solved for Œ when æ is replaced by r, the sample autocorrelations. The
quantity

1
n− 1

n

∑
i=1

(yi − y)2

estimates the variance of the process Yt, but not σ2.

Recall the problem of invertability, Section 28.1.1, that when faced with an option about the value of a
parameter the one with size less than 1 should be chosen. For an MA (1) process it has already been shown
that

ρ1 =
θ

1 + θ2

However, certain values of the sample autocorrelation may produce complex roots in which case it is not
really possible to estimate the parameter. For a MA (q) process the equations to solve are rather unwieldy;

ρk =


∑

q−k
i=0 θiθi+k

∑
q
i=0 θ2

i
for 1 6 k 6 1

0 otherwise

These equations are very non-linear, so should they need solving numerical methods would need to be
used.

Conditional Least Squares

With least squares estimation parameters are chosen so that the sum of the squares of the differences be-
tween the data and the values predicted by the model—the expression for εi—is minimised. Hence

S∗ =
n

∑
t=p+1

(
(yt − µ)− φ1(yt−1 − µ)− φ2(yt−2 − µ)− · · · − φp(yt−p − µ)

)2

is to be minimised for an AR (p) process. This gives

∂S∗

∂µ
= 0 = −2(1− φ1 − · · · − φp)(n− p− 1)

n

∑
t=p+1

(
(yt − µ)− φ1(yt−1 − µ)− · · · − φp(yt−p − µ)

)
0 = −2

n

∑
t=p+1

(
yt − φ1yt−1 − · · · − yt−pφt−p

)
− 2(n− p− 1)µ(1− φ1 − · · · − φp)

µ̂ =
1

(n− p− 1)(1− φ1 − · · · − φp)

n

∑
t=p+1

yt − φ1yt−1 − · · · − yt−pφt−p

†The first moment is the mean and the second is the variance.
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Observe that µ̂ is approximately y. As y is much simpler it is preferred as the estimator for the mean of the
process. For the other parameters,

∂S∗

∂φi
= 0 = −2

n

∑
t=p+1

(yi − y)
(
(yt − µ)− φ1(yt−1 − µ)− φ2(yt−2 − µ)− · · · − φp(yt−p − µ)

)
0 = cov (yt, yt−i)− φ1 cov (yt−1, yt−i)− · · · − φi−1 cov (yt−1, yt−i)− φi var yi−

− φi+1 cov
(

yy−i−1, yi

)
− · · · − φp cov

(
yt−p, yi

)
Dividing through by var yi gives one of the Yule-Walker equations, and producing such equations for each i
produces a set of p linear equations in p unknowns—the φs. Note the covariance stated above is the sample
covariance, so this produces the same estimates as the method of moments.

For a moving average process finding least squares estimates is not so easy. For an MA (1) process assume
ε0 = 0. The error for the ith datum is then given by εi = yi − θεi−1 so that

S∗ =
n

∑
i=1

ε2
i

this is a polynomial of order n in θ and must be minimised for θ ∈ ( − 1, 1), which is best done using
numerical methods.

Maximum Likelihood

Maximum likelihood works by taking a joint density function evaluated at the observed data and treating
it as a function of the parameters.

Take for example an AR (1) process yt − µ = φ(yt−1 − µ) + εt where

ε ∼ N
(

0, σ2
)

so f (εt) =
1

σ
√

2π
exp

(
−ε2

t
2σ2

)

The joint distribution of the errors is then the product of these. Conditioning is now done on y1, which
essentially means that it is necessary to know y1 or assume some value for it. The joint density function for
the data is then given by changing variables from ε to y in the above. Hence

f (y2, y3, . . . , yn | y1) =
(

2πσ2
) −(n−1)

2 exp

(
−1
2σ2

n

∑
t=2

((yt − µ)− φ(yt−1 − µ))2

)

Now, y1 is Normally distributed, has mean µ, and variance σ2

1−φ2 as is easily shown. This gives a probability
density function for y1

f (y1) =
√

1− φ2

σ
√

2π
exp

(
−(y1 − µ)2(1− φ2)

2σ2

)
Multiplying this with the conditional density function already found gives the joint density function re-
quired: the likelihood.

L(y, φ, µ) =
√

1− φ2
√

2πσ2
exp

(
−(y1 − µ)2(1− φ2)

2σ2 − 1
2σ2

n

∑
t=2

((yt − µ)− φ(yt−1 − µ))2

)

l =
1
2

ln (1− φ2)− n
2

ln (2πσ2) +
−(y1 − µ)2(1− φ2)

2σ2 − 1
2σ2

n

∑
t=2

((yt − µ)− φ(yt−1 − µ))2
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Now, the third term is in the form of t = 1 in the summation, putting y0 = y1. This simplifies to the
unconditional sum of squares so that

=
1
2

ln (1− φ2)− n
2

ln (2πσ2)− 1
2σ2 S(µ, φ)

This can now be differentiated to find parameter estimates. As may be expected σ̂2 = 1
n S(µ̂, φ̂) though the

equations for µ̂ and φ̂ must be solved numerically.

(28.2.3) Quality Of Estimates

Variance Of Estimates

From a maximum likelihood perspective parameters ff are estimated by solving ∂l
∂ff = 0 and the central limit

theorem ensures that
√

n(f̂f− ff) is asymptotic to a multivariate Normal distribution with the information
matrix being asymptotically proportional to the variance-covariance matrix.

Residuals

HAving fitted an ARMA (p, q) model it is necessary to test its adequacy which is usually done by comparing
the estimated residual ε̂t and comparing to εt. For an AR (p) process

yt − µ =
p

∑
i=1

φi(yt−i − µ) + εt

so ε̂t = (yt − µ)−
p

∑
i=1

φ̂i(yt−i − µ̂)

This can be calculated for p + 1 6 t 6 n.

For an MA (q) process

yt = µ + εt +
q

∑
i=1

θqεt−i

ε̂1 = y1 − µ̂

ε̂2 = y2 − µ̂− θ̂1 ε̂1

...

ε̂n = yn − µ̂−
q

∑
i=1

θ̂i ε̂n−j

However, the first q terms are discarded as many terms are missing from their estimation. While this has
an effect on the last n − q terms these are estimated by the correct number of past terms and so are more
reliable.

For an ARMA (p, q) process the result is simply a combination of the above 2 so that

ε̂t = yt − µ̂−
p

∑
i=1

φ̂i(yt−i − µ̂)−
q

∑
i=1

θ̂i ε̂t−j

However, the first few terms must be disregarded. The number dropped is the larger of p and q.

Having calculated the residuals it is now possible to perform a Portmanteau test.
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(28.2.4) Prediction

Minimum Mean Square Error Estimation

Having estimated parameters it is now desirable to use the model to estimate the future. Consider first of
all prediction when the parameters are known.

Given y1, y2, . . . , yn predict l steps ahead ‘optimally’ by the value

ỹT+l|T = E
(

yT+l|T
)

where “yT+l|T” means that values of y up to yT are known. The error in prediction for some general predic-
tor ŷ is yT+l|T − ŷT+l|T so

yT+l|T − ŷT+l|T = yT+l|T −E yT+l|T −
(

ŷT+l|T −E yT+l|T
)

MSE
(

ŷT+l|T
)

= var yT+l|T +
(

ŷT+l|T −E yT+l|T
)2

So ŷ = ỹ is optimal in the sense that the mean square error is minimised.

Actually calculating an estimate in practise is quite easy as it is just a case of calculating expectation. Either
εi is known in which case E εi = εi or it is not known and so E εi = 0. Similarly if yi is known then E yi = yi

whereas if it is not known then yi must be substituted for using the autoregressive process given so that the
index can be reduced to give values of y that are known.

To predict many steps ahead it is necessary to predict all previous steps ahead, which may be expressed in
the relationship yT+l = f (yT + ”T) + εT+1.

Having predicted values the prediction error is of interest. Finding the infinite moving average representa-
tion of the general ARMA (p, q) process and the prediction for it,

yT+l =
∞

∑
i=0

φiyT+l−i

=
1

∑
j=l

ψjεT+l−j +
∞

∑
j=l

ψjεT+l−j

=
l

∑
j=0

ψl−jεT+j +
∞

∑
j=0

ψl+jεT−j putting j 7→ l − j and j 7→ j + l

Now taking conditional expectation (conditional on T) the second summation is completely determined and
gives the (minimum) mean square error of yT+l , which is also the prediction of yT+l . The other summation
is therefore the error in prediction. The mean square error of this prediction error is

E
(

yT+l − ỹT+l|T
)2

=
l

∑
j=1

ψ2
l−jσ

2 = σ2
(

1 + ψ2
1 + ψ2

2 + · · ·+ ψ2
l−1

)
If the εis are Normally distributed then

ỹT+l|T ± 1.96σ
√

1 + ψ2
1 + ψ2

2 + · · ·+ ψ2
l−1

is a 95% prediction interval for yT+l .
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Using Estimated Parameters To Make Predictions

Without knowledge of what the model parameters are, or even what the model is, it would be expected
that the predictions will be less precise. The same estimation process is used, but the estimate is now called
ỹ∗T+l|T and is calculated using the estimates ˆ̀ and Œ̂ for ` and Œ.

Consider the simple AR (1) case where ŷT+l|T = φlyT and ỹ∗T+l|T = φ̂lyT . The prediction error is

yT+l − ỹ∗T+l|T =
(

yT+l − ỹT+l|T
)

+
(

ỹT+l|T − ỹ∗T+l|T

)
=
(

yT+l − ỹT+l|T
)

+ yT

(
φ̂l − φl

)
MSE

(
ỹ∗T+l|T

)
= MSE

(
ỹT+l|T

)
+ y2

T E
(

φ̂l − φl
)2

Predicting many steps ahead requires many parameter estimates. Consider predicting only 1 step ahead,

then E
(

φ̂l − φl
)2

= var φ̂.

Hypothesis Testing

Likelihood ratio tests can be used to test the relative worth of various models. As usual the models must be
nested, but further restrictions apply as an ARMA (1, 1) cannot be tested against an ARMA (2, 2) because of
difficulties estimating the extra parameters from the null hypothesis. Note also that the models ARMA (1, 2)
and ARMA (2, 1) are not nested.

The likelihood ratio test statistic
λ =

L(α̂0)
L(α̂

is calculated where α̂0 is the estimate of α (or ff) constrained to the conditions of the null hypothesis. α̂ is the
maximum likelihood estimate. −s ln λ has an approximate χ2

m distribution where there are m constraints in
the null hypothesis.

Sums Of ARMA Processes

The sum of two uncorrelated ARMA processes is an ARMA process known as the reduced form. Say Xt is
an ARMA (p1, q1) process and that Yt is an ARMA (p2, q2) process. Then Zt = Xt + Yt is an ARMA (p, q)
process where p 6 p1 + p2 and q 6 max{p1 + q2, p2 + q1}.

Suppose that Xt is the process φx(L)xt = θx(L)εt that that Yt is the process φy(L)yt = θyηt. Each of these
expressions is multiplied through by the autoregressive part of the other. Hence

φx(L)xt = θx(L)εt 7→φy(L)φx(L)xt = φy(L)θx(L)εt

φy(L)yt = θy(L)ηt 7→φx(L)φy(L)yt = φx(L)θy(L)ηt

Now adding,
φx(L)φy(L)(xt + yt) = φy(L)θx(L)εt + φx(L)θy(L)ηt

The left hand side is at most an AR (p1 + p2) process, and from the right hand side it is evident that q 6

max{p1 + q2, p2 + q1}.

The inequalities are used because if φx(L) and φy(L) have common factors then only one copy of the factor
is used in the definition of φz(L) = φx(L)φy(L). Therefore if φx(L) = φy(L) then φz(L) = φx(L) = φy(L).
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(28.3) Analysis By Frequency

(28.3.1) Modelling Time Series Using Functions

An alternative way to model time series it to use some kind of function of time. The functions may be
chosen to represent trends and cyclicity in the data, as is discussed in Section 28.3.2.

Suppose that a time series Yt has a periodic component of known frequency, then it may be modelled by

Yt = R cos (ωt + θ) + εt

= α cos (ωt) + β sin (ωt) + εt

where ω is the frequency (in radians), R is the amplitude, and θ is the phase. An alternative parameterisation
takes f = ω

2π which is the number of cycles per unit time, giving 1
f as the wavelength. Linear regression

can be used to find α and β which are assumed to be independent random variables with expected value 0,
hence giving a stationary process. Combining different cyclic components gives

Yt =
k

∑
j=1

Rj cos (ωjt + θj) + εt

which is stationary whenever the Rj are uncorrelated random variables with mean 0, or when the θj are
uniform on the interval (0, 2π).

Spectra

The power spectral distribution function F(w) is defined for a stochastic process with autocovariance func-
tion γ(k) such that

γ(k) =
∫ π

0
cos (wk) dF(w)

If F is differentiable then where f (w) = dF
dw is the spectral density function this may be rewritten as

γ(k) =
∫ π

0
cos (wk) f (w) dw

It is possible to relate f (w) to γ(k) by the functions

f (w) =
1

2π

(
γ(0) + 2

∞

∑
k=1

γ(k) cos (wk)

)

=
1

2π

∞

∑
k=−∞

γ(k)e−iwk

These expressions are called the spectra, and the second can be calculated by replacing L with eikw in the
autocovariance generating function.

For an MA (1) process yt = εt + θεt−1 so

f (w) =
1

2π

(
(1 + θ2)σ2 + 2θσ2 cos w

)
=

σ2

2π

(
1 + θ2 + 2θ cos w

)
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For an AR (1) process

f (w) =
1

2π

(
σ2

1− φ2 + 2
∞

∑
k=1

φ|k|

1− φ2 cos wk

)

=
σ2

2π(1− φ2)

(
1 + 2

∞

∑
k=1

φ|k| cos wk

)

(28.3.2) Time Series Decomposition

The decomposition of time series was developed in the 1920s, and as such can be done without the aid of
a computer (unlike most of the preceding material). A time series is modelled as a composition of pattern
and error, and the pattern may consist of numerous components such as overall trend, seasonality, etc. Such
models may be either additive or linear, so

Xt = It + Tt + Ct + Et

Xt = ItTtCtEt

where I is a seasonal index, T is overall trend, C is cyclicity, and E is error. The various components are
gradually deduced then removed from the data to allow further analysis. The following discussion is for the
multiplicative model, and by replacing division by subtraction is readily modified for the additive model.

First of all use linear regression to fit an overall trend. In exceptional circumstances a quadratic trend may
be used. This will give a linear model for the data which is likely to fit poorly. Divide each datum by the
corresponding fitted value, hence ‘detrending’ the data.

The seasonal indices are obtained by dividing the detrended data by a moving average of length equal to
the seasonal period. For each season the centre of the distribution for that season is estimated—Minitab uses
the median. This value is taken as the seasonal index and each datum may be divided by the corresponding
seasonal index in order to obtain the seasonally adjusted data. It is usual to adjust the seasonal indices so
that their average is 1. (0 for the additive model.)

The choice of multiplicative or additive model is often down to personal preference. However, note that a
multiplicative model is suggested when the size of a seasonal pattern is proportional to the trend.


