
Chapter 32

MSMYP5 Group Theory

(32.1) Basic Results

(32.1.1) Homomorphisms

Definition 1 A group is a quadruple (G, 1, i, m) where G is a set, 1 ∈ G, i is a unary function, and m is a binary
function, and such that

1. m(1, x) = x = m(x, 1) for all x ∈ G.

2. m(i(x), x) = 1 = m(x, i(x)) for all x ∈ G.

3. m(m(x, y), z) = m(x, m(y, z)) for all x, y, z ∈ G.

As the notation m(x, y) and i(x) is somewhat laborious, they are abreviated to m(x, y) = xy and i(x) = x−1.
Further, it is usual to identify G (the set) with the quadruple. It is not actually necessary to specify 1 and i,
as they are determined by G and m in the sense that when G and m are given 1 and i can be calculated.

Definition 2 Let G = (G, 1G, iG, mG) and H = (H, 1H , iH , mH) be groups. H is a subgroup of G if as sets H ⊆ G,
1H = 1G, and the functions iG and mG restrict to those of H.

A sufficient condition for a subset H of a group G is that H be non-empty and finite, and closed under m of
G. Showing this shows the equivalence of the above definition of a subgroup to the ‘usual’ one.

Definition 3 Let G and H be groups. A [group] homomorphism is a function θ : G → H such that

1. θ(1G) = 1H .

2. θ(x−1) = (θ(x))−1.

3. θ(xy) = θ(x)θ(y).

Note that s ome definitions take only point 3, the other 2 being deduced from this.

Definition 4 If G and H are groups and θ : G → H and φ : H → G are homomorphisms such that φ ◦ θ = IdG then
θ and φ are group isomorphisms.

Definition 5 Let N 6 G. N is normal, written N E G if and only if g−1ng ∈ N for all n ∈ N and g ∈ G.

It can be shown that for N 6 G the relation

x ∼ y ⇔ y−1x ∈ N

is an equivalence relation with equivalence classes corresponding to the cosets of N. The left and right
cosets only coincide when N E G, and in this case a factor group G

N can be formed.
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Theorem 6 (Homomorphism) Let G and H be groups and θ : G → H be a homomorphirm. Then

1. ker θ E G

2. Im θ 6 H

3. There is an isomorphism

θ :
G

ker θ
→ Im θ defined by θ : gN 7→ θ(g)

Proof. 1. First of all, N = ker θ 6 G since

• θ(1G) = 1H so 1G ∈ N.

• If x ∈ N then θ(x) = 1H . But then θ(x−1) = (θ(x))−1 = 1−1
H = 1H and thus x−1 ∈ N.

• If x, y ∈ N then θ(x) = θ(y) = 1H . Then θ(xy) = θ(x)θ(y) = 1H1H = 1H thus xy ∈ N.

So N is indeed a subgroup of G. Further, if g ∈ G and n ∈ N then

θ(g−1ng) = θ(g−1)θ(n)θ(g) = θ(g−1)1Hθ(g) = (θ(g))−1θ(g) = 1H

thus g−1ng ∈ N meaning that N E G, as required.

2. Certainly M = Im θ ⊆ H, so it is now checked for being a group.

• θ(1G) = 1H so 1H ∈ M.

• If h ∈ M then h = θ(g) for some g ∈ G. But then θ(g−1) = (θ(g))−1 = h−1 ∈ M.

• If h, k ∈ M then h = θ(g) and k = θ( f ) for some f , g ∈ G. Then hk = θ(g)θ( f ) = θ( f g) ∈ M.

Hence M = Im θ 6 H.

3. Define
θ :

G
N
→ M by θ : gN 7→ θ(g)

First of all it must be shown that θ is well-defined, as each coset gN may be expressed using a different
representative, hN say. If gN = hN then g ∈ hN and so g = hn for some n ∈ N. Then

θ(g) = θ(hn) = θ(h)θ(n) = θ(h)1H = θ(h)

so θ is well defined. θ is a homomorphism since for g, h ∈ G

θ(gNhN) = θ(ghN) = θ(gh) = θ(g)θ(h) = θ(gN)θ(hN)

θ is onto for any θ(g) ∈ M has a corresponding gN ∈ G
N . Finally, θ is 1-to-1 since if gN ∈ ker θ then

θ(gN) = θ(g) = 1H i.e. g ∈ ker θ = N meaning that gN = N. Thus ker θ = {N}. �

The Homomorphism Theorem has 2 immediate consequences.

Corollary 7 (First Isomorphism Theorem) Let N E G and H 6 G. Then there is a group homomorphism θ : H → G
N

which is simply the restriction of the cacnonical homomorphism under which g 7→ gN. Then

1. ker θ E H and is in fact H ∩ N because N is the kernel of the canonical homomorphism.

2. Im θ = HN
N 6 G

N where HN
N means {hN | h ∈ H}.

3. H
H∩N

∼= HN
N

Corollary 8 (Second Isomorphism Theorem) Let H E G and K E G with K 6 H. Let θ be a homomorphism

θ :
G
K
→ G

H
defined by θ : gK 7→ gH
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then
ker θ = {gK | gH = H} = {gK | g ∈ H} =

H
K

and
Im θ =

{
gH | gK ∈ G

K

}
= {gH | g ∈ G} =

G
H

Hence

1. H
K E G

H .

2. G
H 6 G

H (trivial).

3.
G
K
H
K

∼= G
H .

Corollary 9 (Third Isomorphism Theorem, Zassenhaus, Butterfly Lemma) Let H1, H2 6 G, K1 E H1 and K2 E H2.
Then

(H1 ∩ H2)K1
(H1 ∩ K2)K1

∼=
(H1 ∩ H2)K2
(H2 ∩ K1)K2

Theorem 10 (Correspondence) Let G and H be groups and θ : G → H be a homomorphism. Then there exists a
bijection between

• Subgroups K of G that contain (as a subgroup) ker θ; and

• subgroups L of H which are contained in (as a subgroup) Im θ.

Where the correspondence holds x ∈ K ⇔ θ(x) ∈ L, and furthermore

K
ker θ

∼= L

(32.1.2) Group Actions

Definition 11 A group action of a group G on a set X is a function f : G× X → X such that

1. f (1G, x) = x for all x ∈ X.

2. f (gh, x) = f (g, f (h, x)) for all x ∈ X and g, h ∈ G.

If X has a group action, then it may be called a G-set. G-sets may have G-homomorphisms between them:
If (X, ·) and (Y, ◦) are G-sets and θ : X → Y is a G-homomorphism then g ◦ θ(x) = θ(g · x).

A common group action is of a group on itself by conjugation, so x 7→ gxg−1 for some chosen g ∈ G for all
x ∈ G.

(32.1.3) Products Of Groups

Groups may be combined to form new groups. The simplest case is the external direct product where the
Cartesian product of 2 groups is made into a group by component-wise multiplication.

Let G be a group and H and K be subgroups of G. Define

HK = {hk | h ∈ H, k ∈ K}

Certainly HK ⊆ G but it is not necessarily the case that HK 6 G.
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If H E G then
(h1k1)(h2k2) = h1(k1h2k−1

1 )︸ ︷︷ ︸
∈H

(k1k2)︸ ︷︷ ︸
∈K

and so HK 6 G. If furthermore H ∩ K = {1G} then G is said to be a semi-direct product of H and K, written
G = H o K. Similarly, if K E G then

(h1k1)(h2k2) = (h1h2)︸ ︷︷ ︸
∈H

(h−1
2 k1h2)k2︸ ︷︷ ︸

∈K

and so when H ∩ K = {1G}, G = H n K.

Lemma 12 If both H E G and K E G then HK ∼= H × K.

Proof. Let h ∈ H and k ∈ K. Since H E G k−1hk ∈ H and thus h−1k−1hk ∈ H.

Similarly, since K E G h−1k−1h ∈ K and thus h−1k−1hk ∈ K.

But H ∩ K = {1G} so h−1k−1h = 1G, i.e., hk = kh and this is so for all h ∈ H and k ∈ K.

Define now θ : H × K → HK by θ : (h, k) 7→ hk. Then

θ((h1, k1)(h2, k2)) = θ(h1h2, k1k2) = h1h2k1k2 = h1h1h2k2 = θ(h1, k1)θ(h2, k2)

and thus θ is a homomorphism. The image of θ has both H and K as subsets, but since HK is generated by
these, θ must be onto.

Finally, θ is 1-to-1 for if θ(h, k) = 1 then hk = 1 so h = k−1. But then k−1 ∈ H and certainly k−1 ∈ K,
contradicting H ∩ K = {1}. Thus θ is indeed 1-to-1 and so is the required isomorphism. �

In this case HK is said to be an interal direct product, whereas H × K is the external direct product. The
product is semi-direct if only one of H and K is normal in G, though the condition that H ∩ K = {1G} is still
required.

The semidirect product also has an ‘external’ interpretation. Let H and K be groups and that there is an
action of H on K that preserves the group structure of K so that for any x ∈ H the mapping k 7→ x(k) is an
automorphism of K. LEt

G = {(u, x) | u ∈ K, x ∈ H}

and define a binary operation on G by

(u, x)(v, y) = (ux−1(v), xy)

This product can be shown to be assoiative, and clearly (1K , 1H) is the identity. Also,

(u, x)−1 = ((x(u))−1, x−1)

and clearly G has subgoups isomorphic to H and to K,

H∗ = {(1K , x) | x ∈ H}

K∗ = {(u, 1H) | u ∈ K}

Clearly G = H∗K∗ and H∗ ∩ K∗ = (1, 1). Furthermore, if K∗ E G then H∗ acts on K∗ by conjugation in the
same way that H acts on K.
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(32.2) The General Linear Group

(32.2.1) Elementary Abelian Groups

First of all, an alternative definition of a field.

Definition 13 F is a field if

1. (F, 0,−, +) is an abelian group.

2. (F×, 1, i,×) is an abelian group. Extend the operation × so that 0× x = 0 for all x ∈ G.

3. The permutation φx : F → F defined by φx : y 7→ xy is a group homomorphism for (F, 0,−, +).

The third property here is a rather convoluted statement of the distributivity property, namely x(y + z) =
xy + xz.

Perhaps the field of most interest is the integers modulo p for some fixed prime p. This will be denoted Zp.

Definition 14 Let G be a group.

1. The exponent of G is the least positive integer n such that xn = 1g for all x ∈ G.

2. G is called elementary abelian if G is abelian and the exponent of G is prime.

3. G is a p-group if the order of every element of G is a power of the prime p.

4. G is an elementary abelian p-group if the order of every element of G divides p (i.e. is 1 or p).

Note that when G is finite, the exponent of G divides the order of G. Also, the order of the identiry is just 1,
hence the apparently odd definition of an elementary abelian p-group. An easy way to make an elementary
abelian p-group is to take an abelian group G and form G

pG . (It is easy to show that pG E G.)

As interest lies in the general linear group, it is not supprising that matrices with entries from Zp will be un-
der consideration. Note, however, than an equivalent way to think of such matrices is to define equivalence
∼ with A ∼ B if and only if A− B = pC for some matrix C.

(32.2.2) Vector Spaces

Definition 15 A vector space over the field F is an abelian group (V, 0, +,−) together with an action of (F, +) on
(V, +) as a group that restricts to an action of (F×,×) on V as a set.

At this point it is useful to clarify some notation.

• The binary operation of abelian groups will be denoted using additive notation, so that for g, h ∈ G
the ‘product’ of g and h is written g + h.

• Extending the additive notation, if g is operated with itself n times, write ng.

• Elements of the finite field Zp will be denoted [n] for n ∈ Z.

Theorem 16 Let V be an elementary abelian p-group. Then there exists a unique action of Zp on V which makes V
into a vector space. Furthermore, if also W is an elementary abelian p-group then a function θ : V → W is linear if
and only if θ is a homomorphism of the groups V and W.
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Proof. First of all, define the action of (F, +) on (V, +) by

[n]v 7→ nv

This is well-defined as if [n] = [m] then n = m + kp for some k ∈ Z. Then

[n]v = nv = mv + k(pv) = mv = [m]v

Showing that V is a vector space is now merely a case of verifying the axioms.

For the second part of the theorem, trivially any linear map between V and W restricts to a homomorphism
between the underlying abelian groups. Conversely, if θ is a group homomorphism then

θ([n]v) = θ(nv) = nθ(v) = [n]θ(v)

and thus θ is a linear map. �

Definition 17 Let GL (n, p) be the set of invertible n× n matrices with entries from Zp. With the binary operation of
matrix multiplication this is the general linear group.

Observe that det : GL (n, p) → Z×
p is a group homomorphism, and that

det A = ∑
σ∈Sn

(− 1)σ
n

∏
i=1

Aiσ(i)

Definition 18 Define the special linear group, SL(n, p) to be

SL(n, p) = ker
(

det : GL (n, p) → Z×
p

)
that is, the matrices whose determinant is 1.

Theorem 19 The order of GL (n, p) is
n−1

∏
i=0

pn − pi

Proof. The order of GL (n, p) is the number of n × n matrices whose columns are linearly independent.
Choosing columns one by one where ai denotes the ith column:

• The first column can be anything except 0. There are pn − 1 such vectors.

• The second column can be anything in GL (n, P) \ Span {a1}. Now, Span {a1} consists of all scalar
multiples of a1 of which there are p, including the zero vector. Thus there are pn − p choices for a2.

•
...

• Suppose that a1, a2, . . . , ak have been chosen. Then the (k + 1)th column must be chosen from GL (n, p) \
W where W = Span {a1, a2, . . . , ak}. But |W| = pk and so there are pn − pk choices for ak+1.

Alltogether ther number of possible matrices is (pn − 1)(pn − p) . . . (pn − pn−1). �

Corollary 20 |SL(n, p)| = 1
p− 1

n−1

∏
i=0

pn − pi

Theorem 21 The centre of GL (n, p) is the set of scalar matrices Z. Moreover, the centre of SL(n, p) is Z ∩ SL(n, p).
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Proof. Let G = GL (n, p) and let M ∈ G. Let E(i, j) be the identity matrix with an additional 1 in the (i, j)
position (i 6= j). If M is central in G then M must commute with each of the E(i, j) for 1 6 i < j 6 n. By
commutativity

(E(i, j)M)ii = (M)ii + (M)ji = (ME(i, j))ii = (M)ii (22)

(E(i, j)M)ij = (M)ij + (M)jj = (ME(i, j))ij = (M)ii + (M)ij (23)

From (22) it is clear that (M)ji = 0 for all 1 6 i < j 6 n, so that M must be upper triangular. Repeating
the argument with E(j, i) shows that M must also be lower triangular, so that in fact M must be diagonal.
Furthermore, (23) shows that M must be a scalar matrix, and thus Z is precisely the centre of G. �

Definition 24 The projective general linear group is

PGL(n, p) =
GL (n, p)

Z

Similarly for the projective special linear group.

In particular, the projective special linear group is isomorphic to a normal subgroup of the projective general
linear group.

(32.2.3) Important Subgroups Of GL (n, n)

Definition 25 Define the following subsets of GL (n, p):

• Let W be the set of permutation matrices, this is called the Weyl group. Each row(column) contains precisely
one 1.

• Let B be the set of upper triangular matrices which are invertible (and so all diagonal entries are non-zero).
This is the standard Borel group.

• Let T be the set of (invertible) diagonal matrtices. This is called the standard torus.

• Let U be the set of unitriangular matrices i.e. upper triangular matrices with all diagonal entries equal to 1.
This is the unipotent group.

Lemma 26 W ∼= Sn with A 7→ σ ⇔ Aei = ej where σ(i) = j.

Proof. Let θ be the described map. Let θ(A) = σ and θ(B) = τ. Then

(AB)ei = Aeτ(i) = eσ(τ(i))

meaning that θ(AB) = στ = θ(A)θ(B) i.e. θ is a homomorphism. Trivially θ is onto, and θ is 1-to-1 since
ker θ = {In}. Hence θ is an isomorphism. �

Theorem 27 B, T, and U are all subgroups of GL (n, p), and B ∼= U o T.

Proof. As GL (n, p) is finite, it is sufficient to show that B adn T are non-empty and closed under multipli-
cation. As In is in both B and T, they are certainly non-empty.

Let X, Y ∈ B then (X)ij = 0 = (Y)ij for i > j. Now,

(XY)ik =
n

∑
j=1

(X)ij(Y)jk

Suppose i > k
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• If j > k then(Y)jk = 0 and there is no contribution to the sum.

• If j < k then i > j and so (X)ij = 0 and once again there is no contribution to the sum.

Hence for i > k, (XY)ik = 0 meaning that XY is upper triangular. Thus B is closed under multiplication,
and so B 6 GL (n, p).

To show that T 6 GL (n, p) consider the homomorphism

θ : B → T defined by θ : (A)ij 7→

(A)ij if i = j

0 otherwise

Hence Im θ = T and ker θ = U.

Now, clearly U ∩ T = {In}, U E B (because U is the kernel of a homomorphism), and as T is the image
of the same homomorphism the conditions are met for B to be the semi-direct product of T and U, i.e.,
B = U o T. �

(32.2.4) Generators

It is of interest to find generators for the variuos subgroups of GL (n, p), and of course for GL (n, p) itself.
The aim of this section is to show that GL (n, p) = BWB and that this is a disjoint union of the double cosets

BwB = {B1wB2 | B1, B2 ∈ B}

Definition 28 An upper row reduction (or upper transvection) ρ is a row reduction whose correpsonding (elementary)
matrix E lies in B, i.e. is upper triangular.

The action of ρ on a matrix A by its matrix E is on the left, so ρ(A) = EA. These operations can be used to
scale a row of A by a non-zero factor, or to add a multiple of a row to another row.

Lemma 29 The group U of unitriangular matrices is generated by the upper row reductions, i.e. any unitriangular
matrix is a product of (finitely many) upper row reductions.

Proof. If n = 1 then there is only 1 unitriangular matrix, (1), and there is nothing to show.

Suppose that n > 1 and that the result holds for dimensions lesser than n. Let E(i, j, λ) denote the upper
row reduction of adding λ times row j to row i. Thus

E(i, j, λ) =


1

1
. . . λ

1
1

1


where the λ is in position (i, j) and i 6= j. Let A be any n × n unitriangular matrix, and let A′ be the
(n− 1)× (n− 1) matrix obtained from A be deleting row n and column n. By induction there is a sequence
of upper row reductions that takes In−1 to A1 as in equation (30). For each of these row reductions append
a new bottom row and new last column that are all zero except for a 1 in the (n, n) position. Then these are
again upper row reductions which take In to the form

A1 =


λ1
λ2

A′
...

λn−1
0 0 ... 0 1

 (30)
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where A′ is unitriangular and λ1 = λ2 = · · · = 0. To form an arbitrary unitriangular matrix apply the row
operations

P =
n−1

∏
i=1

E(i, n, λi)

Then A = PA1 and the result is shown. �

Corollary 31 B is generated by the invertible diagonal matrices (T), and the upper row reductions.

Proof. By Theorem 27 B = U o T and so by Lemma 29 B is generated by the upper row reductions and the
invertible invertible diagonal matrices. �

Lemma 32 W is generated by the elementary row transpositions.

Proof. A transposition is a product of adjacent transpositions. �

Lemma 33 Let A be an invertible n× n matrix. There is a sequence if upper elementary row operations which reduces
A to a matrix C with the following property:

For each column i there is a row π(i) whose first i− 1 entries
are zero and whose ith entry is non-zero. (34)

Proof. An algorithm for the production of C from A is exhibited.

1. Consider the first column of A. It is not the zero vector since A is invertible. Let i be the row of the
last non-zero entry in this column.

2. Multiply row i by 1
(A)i1

then the last non-zero entry of column 1 is 1 i.e., pre-multiply by E(i, i, 1
(A)ii)

.

3. For 1 6 j < i, add −(A)j1 × row i to row j then column 1 becomes ei. This may be achieved by
pre-multiplying by E(j, i,−(A)j1) for 1 6 j < i. Denote this new matrix by A′.

4. Delete column 1 and row i from A′ to give an (n − 1) × (n − 1) matrix X. By induction there is a
sequence of elementary row operation which transforms X to a matrix X′ with property (34).

5. To each of these elementary row operations insert a new first column and new ith row (so that the old
row i becomes row i + 1) whose ehtries are all zero except for a 1 in the (new) (i, i) position. These
operations transform A′ to the required matrix C. �

Lemma 35 Let π, w ∈ W and let B ∈ B. If πBw ∈ B then πw = In.

Proof. By induction on n, the size of the matrix, if n = 1 then π = w = B = (1) and the result is trivial.

Suppose n > 1 and let w have a 1 in column j of row 1, so w(1) = j. Note that since w is a permutation
matrix it has precisely one 1 in every row and column with all other entries zero. Consider column j of Bw:

• Since (B)11 6= 0 and (w)1j = 1, (Bw)1j is non-zero.

• Since (w)ij = 0 for i > 1 and (B)i1 = 0 for i > 1, (Bw)ij = 0 for i > 1.

Consider now column j of π(Bw). Since π is a permutation matrix, this column must be simply a re-
arrangement of the elements of column j of Bw. But πBw is a product of invertible matrices, and so is
invertible. By hypothesis πBw is upper triangular and so since column j has only one non-zero element it
must be in position (j, j). Therefore π sends row 1 to row j.

Now delete row 1 and column j from both π and w, and delete row 1 abd column 1 from B to give π′, w′,
and B′. By induction π′w′ = In−1 and so πw = In. �
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Corollary 36 If π and w are distict permutation matrices then BπB ∩ BwB = ∅.

Proof. Suppse that B1πB2 = B3wB4, then B−1
3 B1 = wB4B−1

2 π−1. Hence by Lemma 35 wπ−1 = In. �

Corollary 37 GL (n, p) = BWB.

Proof. By Lemma 33 there is a sequence of upper elementary row operations that reduces any matrix C ∈
GL (n, p) to the form wB for some w ∈ W. But a product of upper elementary row operations gives an upper
triangular matrix, and so if B′ is the inverse of this then C = B′wB. �

(32.3) Local Theory

(32.3.1) p-groups

Throughout this section it will be assumed that p is a fixed prime.

Definition 38 Let p be a prime and n be a positive integer that is not divisible by p. Then where n = pkm, pk is called
the p-local part of n.

Definition 39 Let G be a group and x ∈ G. x is a p-element if and only if the order of x is a power of p.

Definition 40 A group G is a p-group if and only if all elements of G are p-elements.

Lemma 41 (Cauchy) Let G be a group and p | |G|. Then G has an element of order p.

Proof. Let Ω be the set of products x1x2 . . . xp of elements of G such that x1x2 . . . xp = 1G. Now, |Ω| = |G|p−1

because the first p − 1 elements of any product can be chosen at will, while the final element must be the
inverse of the product of p− 1 elements.

Sonsider the action of Cp on Ω. The generator of Cp, 1 + pZ, sends x1x2 . . . np to x2x3 . . . xpx1 from which it
is evident that every orbit is either a fixed point or a cycle of length p. But a fixed point must be a product
of the form x1x1 . . . x1 meaning that x1 has order p—if any fixed points exist.

Now, Ω is a disjoint union of its orbits, and since each not-fixed point must be in an orbit of cardinality a
power of p (by the Orbit-Stabiliser theorem) and so

number of fixed points ≡ |Ω| mod p = 0 mod p

But 1G is a fixed point, and so there must exist at least p− 1 others, say xp = 1G. As p is prime this means
that x has order p. �

Corollary 42 G is a finite p-group if and only if |G| is a power of p.

Proof. (⇒) Using the contrapositive, suppose that |G| is not a power of p, then there is a prime q 6= p such
that q | |G|, and so by Lemma 41 G has an element of order q. Hence G is not a p-group.

(⇐) Following from Lagrange’s Theorem, if x ∈ G then o(x) | |G|. But G is a power of a prime, thus so
must o(x) be. �

Thw following result uses an argument similar to that of Lemma 41.

Theorem 43 If G is a non-trivial p-group then Z(G) is non-trivial.
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Proof. Let G act on itself by conjugation, so g · x = gxg−1. Now, G is a disjoint union of its conjugacy classes
which in this case are the orbits of the action. Furthermore, by the Orbit-Stabiliser theorem the cardinality
of each orbit must divide |G| (and thus be a power of p). Hence if there is 1 fixed point, there must be at
least p− 1 more.

As 1G is a fixed point, there are at least p − 1 more. Let x be one of these fixed points, then gxg−1 = x
∀g ∈ G, i.e., xg = gx ∀g ∈ G and thus 1G 6= x ∈ Z(G). �

Lemma 44 (Not Burnside’s Lemma) Let G be a finite group acting on a set X. If G has t orbits on X then

t = ∑
g∈G

|fix g|

Proof. Consider the set E = {(g, x) ∈ G× X | x ∈ fix g} then

fix g = {x ∈ X | (g, x) ∈ E}

stabG (x) = {g ∈ G | (g, x) ∈ E}

Hence

∑
g∈G

|fix g| = ∑
x∈X

| stabG (x)|

Let x1, x2, . . . , xt representatives of the orbits O1,O2, . . . ,Ot, then if x is in the same orbit as xi there exists
g ∈ G such that g(x) = xi and therefore

g−1( stabG (xi))g = stabG (x)

so | stabG (x)| = | stabG (xi)|. Hence

∑
g∈G

|fix g| =
t

∑
i=1

∑
x∈Oi

| stabG (x)|

=
t

∑
i=1

|Oi|| stabG (xi)|

=
t

∑
i=1

|G| by the orbit-stabiliser theorem

= t|G| �

(32.3.2) Sylow Subgroups

Definition 45 Let G be a finite group of order |G| = pkm where p is prime and p - m. Let H be a p-subgroup of G,
then H is a Sylow p-subgroup if and only if |H| = pk.

Lemma 46
(

pkm
pk

)
= m mod p.

Proof. Let G = Πpkm and H = Πpk so H 6 G. Let

Ω = {X ⊆ G | |X| = pk}

then H acts on Ω by multiplication on the elements of some X thus producing a different element of Ω.
Now, Ω is a disjoint union of its orbits under H, and by the Orbit Stabiliser Theorem the cardinality of each
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of these orbits must divide |H| = pk. Now, fix H is the set of all fixed points. By the Orbit-Stabiliser theorem
the cardinality of all orbits under the action of H must divide |H| = pk and hence

|Ω| ≡ |fix H| mod p (47)

Claim that X is fixed by H if and only if X = Hx for some x ∈ G.

(⇒) Suppose that X ∈ Ω is fixed by H, then ∀h ∈ H ∀x ∈ X hx ∈ X. Therefore Hx ⊆ X for chosen x ∈ X.
But |Hx| = |H| = pk = |X| and therefore Hx = X.

(⇐) If X = Hx then for any h ∈ H and y ∈ X, y = h′x for some h′ ∈ H and therefore hy = hh′x = h′′x ∈
Hx = X and so X is fixed by H.

Thus the number of fixed points in Ω is equal to the number of cosets of H in G, namely

|G|
|H| =

pkm
pk = m

Now, |Ω| = (pkm
pk ) and hence by equation (47) the result is shown. �

(32.3.3) Sylow’s Theorem

Theorem 48 (Sylow) Let G be a group of order pam where p is prime and p -m. Then

1. G has a Sylow p-subgroup, H say.

2. If G has k Sylow p-subgroups then k ≡ 1 mod p.

3. K is a Sylow p-subgroup of G if and only if K = gHg−1 for some g ∈ G.

4. If G has k Sylow p-subgroups then k |m.

Proof. Let Ω = {X ⊆ G | |X| = pa} then G acts on Ω by translation.

1. By Lemma 46, |Ω| = (pam
pa ) ≡ m mod p. Since Ω is a disjoint union of its orbits, there must be at least

one orbit, O say, for which p - |O|. Let X ∈ O and 1G ∈ X, and let H = stabG (X).

By the Orbit Stabiliser Theorem |O| =
∣∣∣ G

H

∣∣∣. But p - |O| and pa |G, therefore pa | |H| so that |H| > pa.

On the other hand, if h ∈ H = stabG (X) then since 1G ∈ X, h = h1G ∈ hX = X and hence
|H| ⊆ |X| = pa.

By the preceeding two paragraphs, |H| = pa and thus G does indeed have a Sylow p-subgroup.

2. From above given an orbit O such that p - |O| a Sylow p-subgroup can be constructed: namely the
stabiliser of X ∈ O with 1G ∈ X. Now, H ⊆ X, but since |H| = pa, H = X. Hence

g · X = {gh | h ∈ X} = {gh | h ∈ H} = gH

so O = G
H .

However, if H is a Sylpw p-subgroup then
∣∣∣ G

H

∣∣∣ = m and is an orbit in Ω (whose cardinality is indi-
visible by p). But then this orbit gives rise to a Sylow p-subgroup, which must be H. Hence there is a
bijection

{Sylow p-subgroups} ↔ {Orbits in Ω with cardinality indivisible by p} (49)
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Thus Sylow p-subgroups may be counted by counting the orbits in Ω with cardinlaity not divisible
by p.

|Ω| = ∑
all orbits, O

|O|

≡ ∑
{O|p-|O|}

|O| mod p

≡ ∑
{O|p-|O|}

m mod p

≡ km mod p

where there are k orbits of cardinality indivisible by p, and thus by equation (49), there are k Sylow
p-subgroups. But by Lemma 46 Ω ≡ m mod p,

so km ≡ m mod p

so k ≡ 1 mod p

as required.

3. Let H be the Sylow p-subgroup constructed above, and let K be another Sylow p-subgroup. Now, K
may act on G

H by gH 7→ kgH. Let

F = fix G
H

(K) =
{

gH ∈ G
H
| kgH = gH ∀k ∈ K

}
Now, G

H is a disjoint union of K-orbits and the cardinality of each orbit must (by the Orbit Stabiliser
Theorem) divide |K| = pa. But p -m =

∣∣∣ G
H

∣∣∣ and therefore F is non-empty and

m = |O| ≡
∣∣∣fix G

H
(K)

∣∣∣ mod p

Suppose gH ∈ F then

kgH = gH ∀k ∈ K

⇔ k(gHg−1) = gHg−1 ∀k ∈ K

⇔ k ∈ gHg−1 ∀k ∈ K

Hence K 6 gHg−1. But |K| = |gHg−1| = pa and so K is a conjugate of H. As K was any Sylow
p-subgroup, all Sylow p-subgroups are conjugate.

4. G acts transitively (by conjugation) on its Sylow p-subgroups and hence by the Orbit-Stabiliser theo-
rem k | |G|. But |G| = pam and k ≡ 1 mod p therefore k - p and hence k |m. �

(32.3.4) Applications Of Sylow’s Theorem

Example 50 Let p and q be primes with p < q. If G is a group of order pq then G ∼= Cp o Cq. Furthermore, if q 6≡ 1
mod p then G ∼= Cpq

Proof. Solution Let G be a group of order pq, let N be a Sylow p-subgroup, and H be a Sylow q-subgroup.
Then |N| = p and |H| = q and so both groups are cyclic.

Let x ∈ N ∩ H, then o(x) is a power of p, and is a power of q too. Since p and q are different primes, x = 1G
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and hence N ∩ H = {1G}.

Since N ∩ H = {1G}, NH = {nh | n ∈ N, h ∈ H} is a set of pq distinct elements. But NH ⊆ G, so since
|NH| = |G|, NH = G, i.e., G = 〈N, H〉.

Let kp and kq be the numbers of Sylow p- and q-subgroups respectively. Now, by Theorem 48 (Sylow) kq | p,
so kq = 1 or kq = p.

By Theorem 48 (Sylow), kq ≡ 1 mod q, so if kq = p then p = 1 + kq for some k ∈ N, which contradicts that
p < q. Therefore kq = 1.

By Theorem 48 (Sylow), all Sylow q-subgroups are conjugate and thefore since kq = 1, N E G. Hence since
G = 〈N, H〉 and N ∩ H = {1G} the conditions are met for G ∼= N o H.

Consider now kp and by hypothgesis, assume that q 6≡ 1 mod p. By Theorem 48 (Sylow) kp | q and kp ≡ 1
mod p and therefore kp = 1 or kp = q. To avoid a contradiction kp = 1 so that H E G and hence G ∼=
H × N ∼= Cp × Cq ∼= Cpq. �

Example 51 If p and q are distinct primes then there is no simple group of order p2q.

Proof. Solution Suppose that G is a simple group of order p2q and consider the Sylow p- and q-subgroups
of G, say they number kp and kq repectively.

By Theorem 48 (Sylow) kp |q. Since G is simple this gives kp = q. Also,

q = kp ≡ 1 mod p ⇒ q > p (52)

Similarly, kq | p2 and kq ≡ 1 mod q

• If kq = 1 then G is not simple, a contradiction, so kq 6= 1.

• If kq = p then it is required that p ≡ 1 mod q and therefore p > q, in contradiction with observation
52). Hence kq 6= p¿

• If kq = p2 then it is required that p2 ≡ 1 mod q and so q | p2 − 1 = (p + 1)(p− 1). By observation (52)
q = p + 1 and hence q = 3 and p = 2.

Let G be a group of order 12 = 223 then the number of Sylow 2-subgroups, k say, must satisfy k |3 and k ≡ 1
mod 2. Therefore k = 1 and thus the Sylow 2-subgroup of G is normal in G, the contradiction required to
complete the proof. �

Example 53 A finite group of order p2 is Abelian.

Proof. Let G have order p2, then G is a p-group and so has non-trivial centre, Z say. By Lagrange’s Theorem,
either Z = G or |Z| = p. In the former case the result is trivial.

Suppose that |Z| = p, then
∣∣∣ G

Z

∣∣∣ = p and so is cyclic. Say G
Z is generated by xZ for some x ∈ G then the

elements of G must be of the form xiy whence said element lies in the coset xiZ and y ∈ Z. Take another
such element, xjz say, then

(xiy)(xjz) = xi+jyz = (xjz)(xiy)

and thus G is Abelian. But this is a contradiction, since were G Abelian, Z(G) = G and in this case |Z| =
p < |G| = p2. Hence the former case, Z = G must hold i.e., G is Abelian. �

Definition 54 Let x ∈ N. Define ordpx to be the number of times p appears in the prime factorisation of x.

Theorem 55 Let G be a finite group, N E G, and Q be a Sylow p-subgroup of G. Then
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1. QN
N is a Sylow p-subgroup of G

N .

2. Q ∩ N is a Sylow p-subgroup of N.

Proof. 1. By Corollary 7 (First Isomorphism Theorem) QN
N

∼= Q
Q∩N . Now,∣∣∣∣ QN

N

∣∣∣∣ =
∣∣∣∣ Q

Q ∩ N

∣∣∣∣ =
|Q|

|Q ∩ N|

Since |Q| is a power of p and by Lagrange’s Theorem |Q∩ N| | |Q|,
∣∣∣ QN

Q

∣∣∣ is also a power of p and thus
is a p-group.

Now, Q 6 QN 6 G so by Lagrange’s Theorem |Q| | |QN| and |QN| | |G|. As Q is a Sylow p-subgroup
of G, ordp(|Q|) = ordp(|G|) and therefore ordp(|QN|) = ordp(|G|). So

ordp

(∣∣∣∣ QN
N

∣∣∣∣) = ordp

(
|QN|
|N|

)
= ordp(|QN|)− ordp(|N|)

= ordp(|G|)− ordp(|N|) (56)

= ordp

(∣∣∣∣ G
N

∣∣∣∣)

and hence QN
N is a Sylow p-subgroup of G

N .

2. By Corollary 7 (First Isomorphism Theorem) and equation (56) above,

ordp

(∣∣∣∣ Q
Q ∩ N

∣∣∣∣) = ordp(|G|)− ordp(|N|) (57)

But also

ordp

(∣∣∣∣ Q
Q ∩ N

∣∣∣∣) = ordp(|Q|)− ordp(|Q ∩ N|)

= ordp(|G|)− ordp(|Q ∩ N|) (58)

Thus equating equation (57) with equation (58) gives

ordp(|N|) = ordp(|Q ∩ N|)

and hence Q ∩ N is a Sylow p-subgroup of N. �

(32.3.5) The Frattini Argument

Theorem 59 (Frattini Argument) Let G be a finite group and N E G. Let P be a Sylow p-subgroup of N, then
G = NG(P)N.

Proof. Let Ω be the set of Sylow p-subgroups of N. If Q ∈ Ω and g ∈ G then since N is normal and Q 6 N,
gQg−1 6 N. But |gQg−1| = |Q| and thus gQg−1 ∈ Ω for all g ∈ G. Thus G acts on Ω by conjugation.

For any P ∈ Ω and g ∈ G gPg−1 ∈ Ω but since all Sylow p-subgroups of N are N-conjugate, ∃n ∈ N such
that n(gPg−1)n−1 = P, so that gn ∈ NG(P). Thus g ∈ NNG(P) and since g was arbitrary, G ⊆ NNG(P).
Certainly NNG(P) ⊆ G and thus the theorem is proven. �



16 CHAPTER 32. MSMYP5 GROUP THEORY

(32.3.6) Nilpotent Groups

Definition 60 A group G is nilpotent if and only if every Sylow subgroup of G is normal.

The objective of this section is to arrive at the following equivalence.

G nilpotent
Corollary 70⇒ G has property N Theorem 71⇒ (H 6 G maximal ⇒ H E G) Theorem 63⇒ G nilpotent

Theorem 61 A nilpotent group is a direct product of its Sylow subgroups.

Proof. Let |G| = pj1
1 pj2

2 . . . pjk
k and let Pi be the Sylow ji-subgroup, which is unique by nilpotency. Define

Hi = P1P2 . . . Pi and H0 = {1G}

then trivially H0 E G. Suppose that Hi E G and consider forming Hi+1. Now,

|Hi| = pj1
1 pj2

2 . . . pji
i and |Pi+1| = pji+1

i+1

and both of these are coprime. Thus if x ∈ Hi ∩ Pi+1 then o(x) must be a divisor of both these i.e., o(x) = 1
and thus x = 1G so that Hi ∩ Pi+1 = {1G}. Hence by Lemma 12 HiPi+1 is a direct product and so by
induction the result is shown. �

Theorem 62 The Frattini subgroup of a finite group G, Φ =
⋂

H6G
H maximal

H is nilpotent.

Proof. Let P be a Sylow p-subgroup of Φ and suppose that NG(P) 6= G, then there is a maximal subgroup of
G, H say, such that NG(P) 6 H.

But by definition, Φ 6 H and thus NG(P)Φ 6 H < G. But by Theorem 59 (the Frattini argument) NG(P)Φ =
G.

The proof now assumes that Φ E G, but this is not revealed until later? �

Theorem 63 Let G be a finite group such that every maximal subgroup is normal. Then G is nilpotent.

Proof. Let P be a Sylow p-subgroup of G that is not normal. Then there exists a maximal subgroup, H say,
such that NG(P) 6 H. Now, P is also a Sylow p-subgrpup of H because P 6 NG(P) 6 H and by hypothesis
H E G and hence by Theorem 59 (the Frattini argument) G = NG(P)H.

However, NG(P) 6 H and thus NG(P)H = H. But then from above H = G, which contradicts that H is
a maximal normal subgroup of G. Thus NG(P) = G so that no maximal subgroup containing NG(P) can
exist. �

Lemma 64 If G is nilpotent and H 6 G then H is nilpotent. Furthermore, if P is the Sylow p-subgroup of G then
H ∩ P is the Sylow p-subgroup of H.

Proof. Let Q be a Sylow p-subgroup of H, then Q is a p-subgroup of G and since all Sylow p-subgroups of G
are conjugate, ∃g ∈ G such that Q 6 gPg−1, but by nilpotency gPg−1 = P so that Q 6 P. Thus Q 6 H ∩ P.

Now, H ∩ P is a p-subgroup of H, and thus |H ∩ P| 6 |Q|. By above, Q = H ∩ P.

But this can be done for any Sylow p-subgroup of H, and so H ∩ P must be the unique Sylow p-subgroup
of H. �

Corollary 65 Let G be nilpotent, so by Theorem 61 G = P1P2 . . . Pk. Then the subgroups of G are the groups of the
form Q1Q2 . . . Qk for Qi 6 Pi.
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Proof. Trivially, if Qi 6 Pi for 1 6 i 6 k then Q1Q2 . . . Qk 6 P.

Converseley, if H 6 G then by Lemma 64 H is also nilpotent and so by Theorem 61 is a product of its Sylow
subgroups, which by Lemma 64 are subgroups of the Sylow subgroups of G. �

Definition 66 Let G be a finite group and let G0 = G. Define Gi+1 = Gi
Z(Gi)

. Define G to have property N if and only
if ∃n ∈ N such that Gn = {1G}.

Theorem 67 If G is a finite p-group then G has property N.

Proof. If |G| = 1 then the result is trivial. Suppose that |G| > 1 and that the result holds for groups of
smaller order. By Theorem 43 G has a non-trivial centre, Z say. But then G1 = G

Z is again a p-group and so
by hypothesis has property N. But then G has property N. �

Lemma 68 Let G be a finite nilpotent group with Sylow subgroups P1, P2, . . . , Pk. Then the centre of G is given by
Z1Z2 . . . Zk where Zi = Z(Pi).

Proof. Let z ∈ Z = Z(G), then z has an expression of the form z = z1z2 . . . zk where zi ∈ Pi. Then

zi = z−1
i−1z−1

i−1 . . . z−1
1 zz−1

k z−1
k−1 . . . z−1

i+1 (69)

Since G is formed as a direct product, the proof of Lemma 12 shows that if g ∈ Pi then g commutes with
elements of Pj for j 6= i. Since z ∈ Z, g commutes with z and thus by equation (69) g commutes with zi.
Hence z ∈ Zi = Z(Pi) and thus Z ⊆ Z1Z2 . . . Zk.

Converseley, let zi ∈ Zi and g ∈ G. Then g has an expression g = g1g2 . . . gk for gj ∈ Pj. Once again by
Lemma 12 zi and gj commute for i 6= j. Also, gi and zi commute becuase zi ∈ Zi. Thus g comutes with zi

and hence Zi ⊆ Z. But then Z1Z2 . . . Zk ⊆ Z and by above the result is shown. �

Corollary 70 If G is a finite nilpotent group then G has property N.

Proof. If |G| = 1 the result is trivial. Let G be a nilpotent group with |G| > 1 and suppose the result holds
for groups of smaller order. By Lemma 68 the centre of G is a direct product of the centres of its Sylow
subgroups, each of which is a pi-group and so by Theorem 43 has a non-trivial centre. Hence the centre of
G is non-trivial and thus by induction G1 = G

Z(G) has property N. �

Theorem 71 Let G be a finite group that has property N. If H is a maximal subgroup of G then H E G.

Proof. If |G| = 1 then the result is trivial. Suppose that |G| > 1 and that the result holds for groups of
smaller order. Let Z = Z(G) and consider HZ. Since H is maximal, either ZH = G or HZ = H.

• If HZ = G observe that H ⊆ NG(H) and Z ⊆ NG(H) and therefore G = HZ ⊆ NG(H) so G = NG(H)
which means that H E G.

• If HZ = H then Z ⊆ H. By Theorem 10 (Correspondence) H
Z is maximal in G

Z and thus by induction
H
Z E G

Z but then applying Theorem 10 again gives H E G.

Both cases are covered, so the result is shown. �

(32.4) Solubility

The merit of studying soluble groups is to reduce questions about a group G to questions about the groups
N and G

N for N E G. As these are smaller groups, the questions should be simpler to answer. For example,
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1. G is a p-group if and only if N and G
N are both p-groups.

2. If N 6 Z(G) then G is nilpotent if and only if G
N is nilpotent.

Definition 72 A normal series for a finite group G is a sequence of subgroups of G, H0, H1, . . . , Hk such that H0 =
{1G}, Hk = G, Hi 6 Hi+1, and Hi E G for all i.

Normal series are not particularly interesting. However, they are readily modified to provde more informa-
tion about a group.

Definition 73 A subnormal series for a finite group G is a sequence of sungroups of G, H0, H1, . . . , Hk such that
H0 = {1G}, Hk = G, and Hi E Hi+1.

1. The integer k is called the length of the series.

2. The quotient groups Hi+1
Hi

are called the factors of the series.

3. A subnormal series with simple factors is called a composition series.

Note that the condition that the factors are simple is equivalent to requiring that Hi is a maximal normal
subgroup of Hi+1. Note also that two subnormal series are equal if they have the same factors, which need
not occur in the same order.

Theorem 74 If G is a finite group, then G has a composition series.

Proof. If |G| = 1 then the result is trivial. Suppose that |G| > 1 and that the result holds for groups of smaller
order. Let X be the set of proper normal subgroups of G, then since G is finite so is X. X is non-empty for
{1G} ∈ X and thus since X is finite it has an element N of maximal cardinality.

By induction, N has a composition series, H0, H1, . . . , Hk say, where Hk = N. But then H0, H1, . . . , Hk, G is a
composition series for G. �

Theorem 75 (Jordan-Hölder) Let H0, H1, . . . , Hn and K0, K1, . . . , Km be composition series for a group G. If S is any
simple group then the number of factors Hi+1

Hi
isomorphic to S is equal to the number of factors Ki+1

Ki
isomorphic to S.

Theorem 75 (Jordan-Hölder: Traditional Statement) Let H0, H1, . . . , Hn and K0, K1, . . . , Km be composition series
for a group G. Then n = m and there exists a permutation σ ∈ Sn such that Hi+1

Hi
∼= Kj+1

Kj
where σ(i) = j.

Proof. If |G| = 1 the result is trivial. Let |G| > 1 and assume the result for groups of smaller order. Consider
2 composition series

H0 < H1 < · · · < Hn−1 < Hn = G (76)

K0 < K1 < · · · < Km−1 < Km = G (77)

Write H = Hn−1 and K = Km−1 then H and K are both maximal proper normal subgroups of G. Consider
HK which is again a normal subgroup of G, and H 6 HK 6 G and thus either HK = H or HK = G.

If HK = H then K 6 H, but since H and K are both maximal and normal, this gives H = K. Furthermore,
|H| < |G| and so by induction the result holds for H. But then equations (76) and (77) are identical, i.e., the
result holds.

If HK = G then H 6= K. Consider N = H ∩ K which is a normal subgroup of G. Let N0, N1, . . . , Nk = N be
a composition series for N. Using Corollary 7 (First Isomorphism Theorem),

H
N

=
H

H ∩ K
∼=

HK
K

=
G
K
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But since equation (77) is a composition series, G
K is simple, and thus so is H

N . Therefore

N0, N1, . . . , Nk, H, G (78)

is a composition series for G and has the same factors as (76). Similarly,

K
N

=
K

H ∩ K
∼=

KH
H

=
G
H

and thus
N0, N1, . . . , Nk, K, G (79)

is a composition series for G and is the same as (76). But (79) and (78) have the same factors, (in the same
order except the last two which are transposed) and hence the composition series are the same, that is

(76) ↔ (78) ↔ (79) ↔ (77)

and so the result is shown. �

Definition 80 A subgroup H of a group G is called characteristic if φ(H) = H for all φ ∈ Aut(G), i.e., is invariant
under all automorphisms of G.

Theorem 81 A finite group G that has no characteristic subgroups (is characteristically simple) is a direct product of
isomorphic simple groups.

Proof. Trivially, the result holds if |G| = 1. Let |G| > 1 and assume that the result holds for characteristically
simple groups of smaller order. Let G be a characteristically simple group, and let N be a minimal non-trivial
normal subgroup of G.

If N = G then G is simple and there is nothing more to show.

Suppose N < G then N is also characteristically simple, for any automorphism of N can be extended to
an automorphism of G by defining φ(g) = g for g ∈ G \ N. Hence by induction N is a direct product of
isomorphic simple groups.

Now, for any φ ∈ Aut(G), φ(N) is also a minimal normal subgroup of G, and is isomorphic to N. Hence
each φ(N) is isomorphic to the direct product of isomorphic simple groups to which N is isomorphic.

Let M be a normal subgroup of G that is a direct product of some images of N under some subset of Aut(G),
so

M = ∏
φ∈Φ

Φ⊆Aut(G)

φ(N)

Note that N is such a group. Let M be maximal amongst such subgroups of G, and consider φ(N) ∩ M for
some φ ∈ Aut(G).

If φ(N) ∩ M = {1G} then φ(N)× M is a direct product, and is again normal. But M 6 φ(N)× M and thus
by the maximility of M, M = φ(M)× M and so φ(N) ⊆ M which contradicts φ(N) ∩ M = {1G}. Thus this
cannot be the case.

If φ(N)∩ M = φ(N) then φ(N) ⊆ M. But as this must hold for any φ,

∏
φ∈Aut(G)

φ(N) ⊆ M

but by the definition of M this must be equality.
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Now, M is a direct product of all images under Aut(G) of N, thus applying any automorphism of G to
M will simply ‘permute’ the order of this direct product. Thus when the direct product is treat as being
internal, M is characteristic in G. But G is characteristically simple, and thus M = G. Hence from above G
is a direct product of isomorphic simple groups. �


