
Chapter 31

MSMYP3 Functions Of Several Real

Variables

(31.1) Limits & Continuity

(31.1.1) Norms

Many ideas from single variable analysis extend readily to more dimensions. The first task when moving
from R to Rn is to find a suitable way to measure distance.

Definition 1 For a = (a1, a2, . . . , an) ∈ Rn the Euclidean Norm of a, ‖a‖, by

‖a‖ =
√

a2
1 + a2

2 + · · ·+ a2
n

where “√” denotes the positive square root.

This is a good generalisation of the absolute value measure in R, as for a = (a) ∈ R it is clearly the case that
‖a‖ = |a|. Rn together with the Euclidean Norm is called n-dimensional Euclidean space.

Lemma 2 (Cauchy’s Inequality) For real numbers a1, a2, . . . , an and b1, b2, . . . , bn(
n

∑
i=1

aibi

)2

=

(
n

∑
i=1

a2
i

)(
n

∑
i=1

b2
i

)

Proof. Let A > 0 then

Ax2 + Bx + C = A
(

x2 +
B
A

x +
C
A

)
= A

(
x +

B
2A

)2
+ C− B2

4A

> 0 if and only if

C− B2

4A
> 0

B2 > 4AC

1
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Using this,

n

∑
i=1

(aix + bi)
2 =

n

∑
i=1

a2
i x2 + b2

i + 2aibix

=

(
n

∑
i=1

ai

)2

x2 +

(
2

n

∑
i=1

aibi

)
x +

n

∑
i=1

b2
i

> 0 if and only if(
2

n

∑
i=1

aibi

)2

6

(
n

∑
i=1

ai

)(
n

∑
i=1

bi

)
�

Theorem 3 For a, b ∈ Rn and λ ∈ R the Euclidean Norm has the following properties.

1. ‖a‖ > 0 with ‖a‖ = 0 ⇔ a = 0.

2. ‖λa‖ = |λ|‖a‖.

3. ‖a + b‖ 6 ‖a‖+ ‖b‖. (Triangle inequality for Rn.)

Proof. 1. ‖a‖ =
√

a2
1 + a2

2 + · · ·+ a2
n > 0 with equality

⇔ a2
1 + a2

2 + · · ·+ a2
n = 0

⇔ a2
1 = a2

2 = · · · = a2
n = 0

⇔ a1 = a2 = · · · = an = 0

⇔ a = 0

2.

‖λa‖ = ‖(λa1, λa2, . . . , λan)‖

=
√

(λa1)
2 + (λa2)

2 + · · ·+ (λan)2

=
√

λ
√

a2
1 + a2

2 + · · ·+ a2
n

= |λ|‖a‖

3. As norms are positive is it sufficient to show that ‖a + b‖2 6 (‖a‖+ ‖b‖)2.

‖a + b‖2 =
n

∑
i=1

(ai + bi)
2

=
n

∑
i=1

a2
i +

n

∑
i=1

b2
i + 2

n

∑
i=1

aibi

6
n

∑
i=1

a2
i +

n

∑
i=1

b2
i + 2

√
n

∑
i=1

a2
i

√
n

∑
i=1

b2
i by Cauchy’s Inequality

= ‖a‖+ ‖b‖+ 2‖a‖‖b‖

= (‖a‖+ ‖b‖)2 �
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(31.1.2) Sequences

Definition 4 A sequence in Rn is a collection of points {ak} where k ∈ N indexes the points and where

ak =
(

ak
1, ak

2, . . . , ak
n

)
Definition 5 A sequence {ak} in Rn converges to a limit a ∈ Rn, written

lim
k→∞

ak = a

if
∀ε > 0 ∃N ∈ N s.t. k > N ⇒ ‖ak − a‖ < ε

Clearly each co-ordinate of ak gives a sequence in R. The following theorem comes as no surprise.

Theorem 6 Let {ak} be a sequence in Rn.

lim
k→∞

ak = a ⇔ lim
k→∞

ak
i = ai ∀i 1 6 i 6 n

Proof. (⇒) Suppose limk→∞ ak = a then ∀ε > 0 ∃N such that ‖ak − a‖ < ε for all k > N. Hence for k > N

∣∣∣ak
i − ai

∣∣∣ 6 √(
ak

1 − a1

)2
+
(

ak
2 − a2

)2
+ · · ·+

(
ak

n − an

)2
= ‖ak − a‖ < ε

Hence limk→∞ ak
i = ai.

(⇐) Suppose that limk→∞ ak
i = ai for 1 6 i 6 n. Let ε > 0 then ε√

N
> 0 for N > 0. Hence for each i there

exists Ni such that
k > Ni ⇒

∣∣∣ak
i − ai

∣∣∣ <
ε√
N

Let
N = max

16i6n
{Ni}

then for k > N

‖ak − a‖ =

√(
ak

1 − a1

)2
+
(

ak
2 − a2

)2
+ · · ·+

(
ak

n − an

)2

6

√
ε2

N
+

ε2

N
+ · · ·+ ε2

N
=
√

ε2 = ε �

(31.1.3) Cauchy Sequences

Definition 7 A sequence {ak} in Rn is a Cauchy sequence if

∀ε > 0 ∃N ∈ N k, l > N → ‖ak − al‖ < ε

Note that Theorem 3 means that ‖al − ak‖ may be used equally well as ‖ak − al‖ (putting λ = −1) so that
without loss of generality it may be assumed that k > l.

Definition 8 A subset A of Rn is bounded if there exists M for which ‖x‖ < M for all x ∈ A.
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Lemma 9 For c, d ∈ Rn

|‖c‖ − ‖d‖| < ‖c− d‖

Proof. By the triangle inequality
‖a + b‖ − ‖b‖ < ‖a‖

Putting a = c− d and b = d gives ‖c‖ − ‖d‖ < ‖c− d‖.
Putting a = c− d and b = −c gives ‖d‖ − ‖c‖ < ‖c− d‖. �

Lemma 10 A Cauchy sequence is bounded

Proof. Let {ak} be a Cauchy sequence in Rn. Take ε = 1 then there exists N such that ‖ak − al‖ < 1 for all
k, l > N. Let L be the least natural number bigger than N, then by Lemma 9, for k > l,

‖ak‖ − ‖al‖ < ‖ak − al‖ < 1

In particular, this gives ‖ak‖ < 1 + ‖al‖. Now let

N′ = max
{
‖a1‖, ‖a2‖, . . . , ‖aL−1‖

}
Take M = max{N′, 1 + ‖al‖} then ‖ak‖ < M for all k i.e. the sequence is bounded. �

If a sequence has a limit, then every subsequence of it will also have the same limit. However, there may
well be convergent subsequences of sequences which do not themselves converge.

Theorem 11 (Bolzano-Weierstrass) If {ak} is a sequence in R that is contained in the closed interval [b, c] then there
is a subsequence {aki} which has a limit d ∈ [b, c].

Theorem 12 A sequence {ak} in Rn is a Cauchy sequence if and only if it has a limit.

Proof. (⇐) Suppose that {ak} has a limit, a say. For any ε > 0, ε
2 > 0 and so ∃N such that ‖ak − a‖ < ε

2 .
Hence for k, l > N,

‖ak − al‖ = ‖
(

ak − a
)

+
(

a− al
)
‖

< ‖ak − a‖+ ‖al − a‖

<
ε

2
+

ε

2
= ε

(⇒) Suppose that {ak} is Cauchy, then for all ε > 0 there exists N such that ‖ak − al‖ < ε for all k, l > N.
So when ak =

(
ak

1, ak
2, . . . , ak

n

)
∣∣∣ak

i − al
i

∣∣∣ =

√(
ak

i − al
i

)2

6

√(
ak

1 − al
1

)2
+
(

ak
2 − al

2

)2
+ · · ·+

(
ak

n − al
n

)2

= ‖ak − al‖

< ε

Hence each of the co-ordinate sequences is Cauchy and thus by Theorem 6 it is sufficient to show that
all the co-ordinate sequences have a limit.

Let {ak
i } be one of the co-ordinate sequences, so 1 6 i 6 n. By Lemma 10 {ak

i } must be bounded and

hence by Bolzano-Weierstrass (Theorem 11) it has a convergent subsequence {a
k j

i } with limit ai say.
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For ε > 0, ε
2 > 0 and ∃N1 such that |ak j

i − ai| < ε
2 for j > N1. But since {a

k j

i } is Cauchy, ∃N2 such that

|ak j

i − al
i | <

ε
2 for kj, l < N2. Hence for N = max{N1, N2}∣∣∣ak

i − ai

∣∣∣ 6 ∣∣∣ak
i − a

k j

i

∣∣∣+ ∣∣∣ak j

i − ai

∣∣∣ <
ε

2
+

ε

2
= ε �

(31.1.4) Subsets of Rn

The ideas of open and closed intervals in R may be extended to Rn as follows.

Definition 13 For a ∈ Rn and r > 0 the open ball of radius r around a is the set

Br(a) = {x ∈ Rn | ‖x− a‖ < r}

Definition 14 A subset N of Rn is a neighbourhood of a point a ∈ Rn if ∃r > 0 such that Br(a) ⊆ N.

Definition 15 A subset U of Rn is an open set if for all a ∈ U there exists r > 0 such that Br(a) ⊆ U.

It is clear that, for example, an open set is a neighbourhood for all of its points, and that an open set is a
union of open balls.

Definition 16 A subset A of Rn is sequentially compact if every sequence of points of A has a convergent subsequence
that has its limit in A.

Note that the Bolzano-Weierstrass Theorem (Theorem 11) means that every closed interval of R is sequen-
tially compact. The following “old chestnut” of a theorem can now be presented: note that the condition is
weaker than sequential compactness.

Theorem 17 A subset A of Rn is closed if and only if each convergent sequence of elements of A has its limit in A.

Proof. (⇒) Suppose that A ⊆ Rn is closed and that {ak} is a convergent sequence in A that has limit
a. Suppose a /∈ A then a ∈ Rn \ A which is open and thus ∃r > 0 such that Bra ⊆ Rn \ A. But
then ‖ak − a‖ > r for all k meaning that for 0 < ε 6 r the definition of a limit cannot be satisfied,
contradicting that {ak} has limit a. Hence a ∈ A.

(⇐) Let {ak} be a sequence in A that has limit a ∈ A. Suppose A is not closed, then Rn \ A is not open
and so there exists a point b ∈ Rn \ A such that for all r > 0, Br(b) ∩ A 6= ∅. Hence for each k ∈ N

construct the sequence {bk} in A with bk ∈ Br(b) ∩ A. Then {bk} is a sequence in A that does not
have its limit in A, which contradicts the hypothesis. Therefore A is closed. �

Theorem 18 (Heine-Borel) A subset A of Rn is sequentially compact if and only if it is closed and bounded.

Proof. (⇒) Suppose that A ⊆ Rn is sequentially compact, then every sequence in A has a convergent sub-
sequence which has its limit in A. But if a sequence is convergent then any subsequence is convergent
to the same limit and so by Theorem 17 A is closed.

Suppose that A is unbounded then for each k ∈ N ∃ak ∈ A with ‖a‖ > k. But then {ak} is an
unbounded sequence and so can have no bounded subsequence. But by Lemma 10 and Theorem 12
convergent sequences are bounded, therefore unbounded sequences cannot converge. As all subse-
quences of {ak} are unbounded, none of them can have a limit, contradicting the sequential compact-
ness of A. Thus A must be bounded.
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(⇐) Suppose that A is closed and bounded. Since A is bounded ∃M > 0 such that for all x ∈ A, ‖x‖ < M.
If x = (x1, x2, . . . , xn) then also |xi| < M for 1 6 i 6 M, so xi ∈ [− M, M].

Let {ak} be a sequence in A with ak = (ak
1, ak

2, . . . , ak
n), then each co-ordinate sequence is a sequence in

[− M, M]. Hence by Bolzano-Weierstrass (Theorem 11) there exists a subsequence, {a
k1

j
1 }, say, of {ak

1}
that is convergent with limit a1 say.

By Bolzano-Weierstrass, the sequence {a
k1

j
2 } has a convergent subsequence {a

k2
j

2 }, say, with limit a2.

By the same reasoning, the sequence {a
k2

j
3 } has a convergent subsequence {a

k3
j

3 }, say, with limit a3.

Applying this argument n times gives n convergent sequences {a
kn

j

i } (1 6 i 6 n). Thus by Theorem 6
{akn

j } is a convergent sequence with limit a = (a1, a2, . . . , an). Since A is closed Theorem 17 gives that
a ∈ A and thus A is sequentially compact. �

(31.1.5) Functions

The logical progression from studying sequences is to study functions of Rn to Rm. As usual, the limit of a
function at a point needs to be independent of the value of the function at that point, if indeed the function
is defined there.

Definition 19 Let f be a function f : A → Rm where A ⊆ Rn. f has limit l (in Rm) as x tends to a if

∀ε > 0 ∃δ > 0 0 < ‖x− a‖ < δ ⇒ ‖ f (x)− l‖ < ε

Theorem 20 Let f be a function f : A → Rm where A ⊆ Rn.

lim
x→a

f (x) = l = (l1, l2, . . . , ln) ⇔ lim
x→a

fi(x) = li ∀i 1 6 i 6 m

Proof. (⇒) Suppose lim
a→a

f (x) = l then

∀ε > 0 ∃δ > 0 0 < ‖x− a‖ < δ ⇒ ‖ f (x)− l‖ < ε

So for 0 < ‖x− a‖ < δ,

‖ fi(x)− li‖ 6

√
m

∑
i=1

( fi(x)− li)2

= ‖ f (x)− l‖

< ε

and so lim
x→a

fi(x) = li.

(⇐) Suppose lim
x→a

fi(x) = li for all i, 1 6 i 6 m. Then for any ε > 0, ε√
m > 0 and thus there exists δi

(1 6 i 6 m) such that ‖ fi(x)− li‖ < ε√
n . Take δ < min16i6m then for 0 < ‖x− a‖ < δ,

‖ f (x)− l‖ =
√

( f1(x)− l1)2 + ( f2(x)− l2)2 + · · ·+ ( fm(x)− lm)2

<

√
n

ε2

n
= ε

and so lim
x→a

f (x) = l. �
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It is clear to see that the usual Algebra of Limits results extend naturally from the case f : R → R.

Continuity

Definition 21 A function f : A → Rm where A ⊆ Rn is continuous at the point a ∈ A if

lim
x→a

f (x) = f (a)

f is said to be continuous on A if f is continuous at all points of A.

Once again, the Algebra Of Limits results hold for continuity. As is customary, there follows a list of contin-
uous functions.

The Euclidean Norm function is continuous since by the backwards form of the triangle inequality (Lemma
9) |‖x‖ − ‖a‖| 6 ‖x− a‖ < ε simply by choosing δ = ε.

Noting that the projection function gi : Rn → R given by gi : x 7→ xi is continuous (using |gi(x)− gi(a)| =
|xi − ai| < ‖a− a‖) a rational function is simply a sum of products of such functions and constants, and so
by the Algebra Of Limits is continuous.

Linear transformations are continuous, as choosing bases the transformation may be represented by a matrix
(aij) say so that

f (x) = AxT =

 n

∑
j=1

a1jxj,
n

∑
j=1

a2jxj, . . . ,
n

∑
j=1

amjxm


which is a polynomial and so is continuous.

Theorem 22 Let A ⊆ Rn and f : A → Rm. Let B ⊆ Rm with Im f ⊆ B ⊆ Rm and g : B → Rl . If f is continuous
at a ∈ A and g is continuous at f (a) then g ◦ f is continuous at a.

Proof. Take ε > 0 then since g is continuous at f (a), ∃δ1 > 0 such that

‖y− f (a)‖ < δ1 ⇒ ‖g(y)− g ◦ f (a)‖ < ε

Also, f is continuous at a, so for any δ1 > 0 there exists δ > 0 such that

‖x− a‖ < δ ⇒ ‖ f (x)− f (a)‖ < δ1

Thus for ‖x− a‖ < δ putting y = f (x) gives ‖g ◦ f (x)− g ◦ f (a)‖ < ε and thus g ◦ f is continuous at a. �

Theorem 23 Let f : A → Rm where A ⊆ Rn and let a ∈ A. Then f is continuous at a if and only if f−1(N) is a
neighbourhood of a whenever N is a neighbourhood of f (a).

Proof. Note that the theorem is of the form A ⇔ (B ⇒ C).

(⇒) Suppose that f is continuous at a and let N be a neighbourhood of f (a). Hence ∃ε > 0 such that
Bε( f (a)) ⊆ N and thus by continuity ∃δ > 0 such that x ∈ Bδ(a) implies f (x) ∈ Bε( f (a)). Therefore

Bδ(a) ⊆ f−1 (Bε( f (a))) ⊆ f−1(N)

meaning that f−1(N) is indeed a neighbourhood of a.

(⇐) Suppose that if N is a neighbourhood of f (a) then f−1(N) is a neighbourhood of a. For any ε > 0 the
open ball Bε( f (a)) is a neighbourhood of f (a) and thus f−1(Bε( f (a))) is a neighbourhood of a. As this
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is a neighbourhood, ∃δ > 0 such that

Bδ(a) ⊆ f−1 (Bε( f (a)))

and thus f is continuous at a. �

Generalising from this, it is easy to show that a function is continuous if and only if its inverse preserves
open sets. This leads to the subject of general topology: the study of continuous functions with continuous
inverses. Finally for this section, the conditions for continuity can be weakened slightly.

Lemma 24 If {ak} is a sequence in A ⊆ Rn with limit a and ak 6= a for all k ∈ N, and if f : A → Rm then { f (ak)}
is a sequence in Rm that has limit f (a).

Proof. As f is continuous

∀ε > 0 ∃δ > 0 0 < ‖ak − a‖ < δ ⇒ ‖ f (ak)− f (a)‖ < ε

But as {ak} is convergent to a,

∀δ > 0 ∃N ∈ N k > N ⇒ ‖ak − a‖ < δ

Thus for k > N, ‖ f (ak)− f (a)‖ < ε and the result is shown. �

Lemma 25 If C is a closed and bounded subset of R then it contains its supremum and infimum.

Proof. As C is bounded, M = sup C exists. Suppose that M /∈ C, then M ∈ R \ C which is open. Hence
∃r > 0 such that Br(M) ⊆ R \ C. As this is a subset of R,

Br(M) = (M− r, M + r)

and so ∃y ∈ Br(M) with y < M which is again an upper bound for C. But this contradicts that M is the least
upper bound, and thus by contradiction M ∈ C. �

Note that the proof that m ∈ C follows a similar form.

Theorem 26 If A is a sequentially compact subset of Rn and f : A → R is continuous, then f is bounded on A and
attains its bounds.

Proof. Let {yk} be a sequence in f (A) then for each k, yk = f (xk) for some xk ∈ A. Thus {xk} is a sequence
in A which is sequentially compact. Hence there is a subsequence, {xki} say, that has a limit, say

lim
i→∞

xki = x ∈ A

But then Lemma 24,
lim
i→∞

f
(

xki
)

= f (x)

meaning that {yk} has a convergent subsequence. Thus f (A) is sequentially compact. By Theorem 18 f (A)
is closed and bounded and so by Lemma 25 f (A) contains its supremum and infimum, M and m say. But as
these are in f (A) there must exist b and c in A such that M = f (b) and m = f (c). �
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(31.1.6) Contraction Mappings

Definition 27 Let A ⊂ Rn and f : A → Rm. f is a contraction mapping if there exists K ∈ R with 0 < K < 1 such
that for all x and y in A

‖ f (x)− f (y)‖ 6 K‖x− y‖

Definition 28 If f : A → A where A ⊆ Rn then a ∈ A is a fixed point of f if f (a) = a.

Theorem 29 (Contraction Mapping, Banach Fixed Point) If A is a non-empty closed subset of Rn and f : A → A is a
contraction mapping then f has a unique fixed point.

Proof. First of all, let x0 and x1 be fixed points of f . Then

‖x0 − x1‖ = ‖ f (x0)− f (x1)‖

6 K‖x0 − x1‖ for 0 < K < 1

so (1− K)‖x0 − x1‖ 6 0

so (1− K)‖x0 − x1‖ = 0

‖x0 − x1‖ = 0

x0 = x1

Thus if f has a fixed point then it is unique. To show that f has a fixed point consider the sequence { f k(x)}
where

f k(x) = f ◦ f ◦ · · · ◦ f (x) = f ( f k−1(x))

for some particular (fixed) x ∈ A. Take any m > 0 then

‖ f m+1(x)− f m(x)‖ = ‖ f ( f m(x))− f m−1( f m−2(x))‖

6 K‖ f m(x)− f m−1(x)‖
...

6 Km‖ f (x)− x‖

Hence for k > l,

‖ f k(x)− f l(x)‖ 6 ‖ f k(x)− f k−1(x)‖+ ‖ f k−1(x)− f k−2(x)‖+ · · ·+ ‖ f l+1(x)− f l(x)‖

6 (Kk−1 + Kk−2 + · · ·+ Kl)‖ f (x)− x‖

6 (Kl + kl+1 + · · ·+ Kk + . . . )‖ f (x)− x‖

=
Kl

1− K
‖ f (x)− x‖

If x is a fixed point there is nothing to show, thus assume it is not. As

1− K
‖ f (x)− x‖ > 0

since lim
l→∞

Kl = 0, there exists N such that for any ε > 0

Kl <
(1− K)ε
‖ f (x)− x‖ for l > N

Hence for k > l > N, ‖ f k(x)− f l(x)‖ < ε and so the sequence { f k(x)} is a Cauchy sequence. By Theorem
12 { f k(x)} has a limit x0 say. But as A is closed, Theorem 17 shows that x0 ∈ A. Since f is a contraction
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mapping
‖ f k(x)− f (x0)‖ 6 K‖ f k−1(x)− x0‖ (30)

but
lim

k→∞
f k−1(x) = lim

k→∞
f k(x) = x0

and so from equation (30) f (x0) = x0. �

(31.2) Differentiation

(31.2.1) Partial Derivatives

As usual let ei denote the vector of zeros except for a 1 in the ith position.

Definition 31 Let f : A → Rm where A ⊆ Rn. The ith partial derivative at a ∈ A is

Di( f (a)) =
(

∂ f
∂xi

)
x=a

= lim
h→0

f (x + hei)− f (x)
h

where ei is the ith standard ordered basis vector.

Taking the partial derivative considers f as a function of the single variable xi which is then differentiated in
the conventional single variable way at the point ai. Taking partial derivatives mixed second order partial
derivatives can be calculated. However, in general calculating the same mixed partial by differentiating in
different orders need not give the same result. There is, however, a sufficient condition for the second mixed
partials to be well-defined in this sense. Recall first the mean value theorem.

Theorem 32 (Mean Value) If f : [a, b] → R is continuous on [a, b] and differentiable on (a, b) then ∃c ∈ (a, b) such
that

f (b)− f (a)
b− a

= f ′(c)

Writing b− a = h then c = a + θh for some 0 < θ < 1, and so equivalently ∃θ, 0 < θ < 1 such that

f (a + h)− f (a) = h f ′(a + θh)

Using this a condition for mixed partials to be “well-defined” can be exhibited.

Theorem 33 Let f : A → R and (x0, y0) ∈ A ⊆ R2. If ∃r > 0 such that D1 f , D2 f , D1D2 f , and D2D1 f all exist
in Br(x0, y0) and are continuous at (x0, y0) then D1D2 f (x0, y0) = D2D1 f (x0, y0).

Proof. Define a real function

g(h) =
f (x0 + h, y0 + h)− f (x0 + h, y0)− f (x0, y0 + h) + f (x0, y0)

h2 (34)

where h is sufficiently small so that x0 + h and y0 + h all lie within Br(x0, y0). Define also the real function

F(x) = f (x, y0 + h)− f (x, y0) so g(h) =
F(x0 + h)− F(x0)

h2

As D f1 exists in Br(x0, y0), F is differentiable for x ∈ (x0, x0 + h) with derivative

F′(x) = D1 f (x, y0 + h)− D1 f (x, y0)
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Hence applying the Mean Value Theorem for F on [x0, x0 + h],

∃θh 0 < θh < 1 such that F(x0 + h)− F(x0) = hF′(x0 + hθh)

Thus substituting into equation (34),

g(h) =
F′(x0 + hθh)

h
=

D1 f (x0 + hθh, y0 + h)− D1 f (x0 + hθh, y0)
h

Define another real function

G(y) = D1 f (x0 + hθh, y) so g(h) =
G(y0 + h)− G(y0)

h

then since D2D1 f exists in Br(x0, y0) G is differentiable on (y0, y0 + h) and hence by the Mean Value Theorem

∃φh 0 < φh < 1 such that G(y0 + h)− G(y0) = hG′(y0 + hφh)

Thus
g(h) = G′(y0 + hφh) = D2D1 f (x0 + hθh, y0 + hφh) (35)

The above argument can be repeated treating first y then x, to yield θ′h and φ′h, both strictly between 0 and 1
such that

g(h) = D1D2 f (x0 + hθ′h, y0 + hφ′h) (36)

Now, D1D2 f is continuous at (x0, y0) and hence by equation (36)

lim
h→0

g(h) = D1D2 f (x0, y0)

but using equation (35) and the continuity of D2D1 f at (x0, y0),

lim
h→0

g(h) = D2D1 f (x0, y0)

As limits are unique the result is shown. �

Of course, this can be easily generalised for functions of Rn → R simply by replacing 1 by i and 2 by j.

(31.2.2) Differentiability And Derivatives

For a function f : R → R to be differentiable at a point a, it is required that there exists some number,
denoted “ f ′(a)”, such that

lim
h→0

f (a + h)− f (a)
h

= f ′(a) or equivalently lim
h→0

f (a + h)− f (a)− h f ′(a)
h

= 0

Motivated by this, the following definition is made.

Definition 37 A function f : A → Rm is differentiable at a point a ∈ A ⊆ Rn if there exists an m × n matrix M
such that

lim
h→0

‖ f (a + h)− f (a)− Mh‖
‖h‖ = 0

where Mh is used in place of (Mh>)>. M is called the derivative of f at a, written D f (a) = M.
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Writing this out using the definition of a limit,

∀ε > 0 ∃δ > 0 0 < ‖h‖ < δ ⇒ ‖ f (a + h)− f (a)− Mh‖ < ‖h‖ε

It is usual to use this form when showing functions to be differentiable, though for showing functions to be
not differentiable it is useful to leave the main expression divided by ‖h‖.

No study of differentiability would be complete without the following old chestnut.

Theorem 38 If f : A → Rm is differentiable at a ∈ A ⊆ Rn then f is continuous at a.

Proof. Let D f (a) = M and choose ε = 1 in the definition of differentiability so that for some δ1 > 0

0 < ‖h‖ < δ1 ⇒ ‖ f (a + h)− f (a)− Mh‖ = ‖h‖

Letting ‖M‖2 = ∑m
i=1 ∑n

j=1 (M)ij,

‖ f (a + h)− f (a)‖ = ‖ f (a + h)− f (a)− Mh + Mh‖

6 ‖ f (a + h)− f (a)− Mh‖+ ‖Mh‖

< ‖h‖(1 + ‖M‖)

Hence for 0 < ‖h‖ < δ = min (δ1, ε
1+‖M‖ ), ‖ f (a + h) − f (a)‖ < ε and so the definition of continuity is

satisfied. �

(31.2.3) Functions Into R

For functions into R partial derivatives can be found, and it is not surprising that under certain conditions—
fir sufficiently “nice” functions—the derivative of a function is simply the matrix of partial derivatives.

Definition 39 If f : A → R and a ∈ A ⊆ Rn and the partial derivatives D1 f (a), D2 f (a), . . . , Dn f (a) all exist, then
the gradient of f at a is

∇ f (a) = (D2 f (a), . . . , Dn f (a)) ∈ Rn

Theorem 40 Let f : A → Rm and a ∈ A ⊆ Rn. Then

1. If f is differentiable at a then D1 f (a), D2 f (a), . . . , Dn f (a) all exist and D f (a) = ∇ f (a).

2. If D1 f (a), D2 f (a), . . . , Dn f (a) all exist in an open ball Br(a) for some r > 0 and are continuous at a then f is
differentiable at a.

Proof. 1. Suppose that f is differentiable at a, then D f (a) exists, and suppose that it is a matrix M =
(M1, M2, . . . , Mn) where Mi is an m× 1 matrix. By differentiability, ∀ε > 0 ∃δ > 0 such that

0 < ‖h‖ < δ ⇒ | f (a + h)− f (a)− Mh|
‖h‖ < ε

Choosing h = hei gives ‖h‖ = |h| and Mh = Mi and thus

0 < |h| < δ ⇒ | f (a + hei)− f (a)− Mih
|h| < ε

But this is the expression for the ith partial derivative which therefore must exist and have Mi =
Di f (a), as required.
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2. Choose h with ‖h‖ < r and such that all the following terms lie in Br(a): Observe that

f (a + h)− f (a) = f (a1 + h1, a2 + h2, . . . , an + hn)

− f (a1, a2 + h2, a3 + h3, . . . , an + hn) + f (a1, a2 + h2, a3 + h3, . . . , an + hn)

− f (a1, a2, a3 + h3, . . . , an + hn) + f (a1, a2, a3 + h3, . . . , an + hn)

...

− f (a1, a2, . . . , an−1, an + hn) + f (a1, a2, . . . , an−1, an + hn)

− f (a1, a2, . . . , an) (41)

where the function f (a1, . . . , aix, . . . , an + hn) (of the single variable x) is differentiable for x ∈ (0, hi)
since Di f exists there. Hence by the Mean Value Theorem ∃θi ∈ (0, 1) such that

f (a1, . . . , ai + hi, . . . , an + hn)− f (a1, a2, . . . , an) = hiD f (a1, . . . , ai + θihi, . . . , an + hn)

and thus substituting into equation (41)

f (a + h)− f (a) =
n

∑
i=1

hiD f (a1, . . . , ai + θihi, . . . , an + hn)

But (∇ f (a))h = D1 f (a)h1 + · · ·+ Dn f (a)hn and so

| f (a + h)− f (a)− (∇ f (a))h| =
∣∣∣∣∣ n

∑
i=1

hiDi f (a1, . . . , ai + θihi, . . . , an + hn)− hiDi f (a1, a2, . . . , an)

∣∣∣∣∣
6

n

∑
i=1

|hi| |Di f (a1, . . . , ai + θihi, . . . , an + hn)− Di f (a1, a2, . . . , an)|

6 ‖h‖
n

∑
i=1

|Di f (a1, . . . , ai + θihi, . . . , an + hn)− Di f (a1, a2, . . . , an)|

But each Di f is continuous at a therefore for any ε > 0, ε
n > 0 and ∃δi > 0 such that

|Di f (a1, . . . , ai + θihi, . . . , an + hn)− Di f (a1, a2, . . . , an)| < ε

n

Hence taking δ < mini δi

| f (a + h)− f (a)− (∇ f (a))h| < h
n

∑
i=1

ε

n
= ‖h‖ε

and thus f is differentiable at a with derivative ∇ f (a). �

Definition 42 A function f : A → Rm where A ⊆ Rn is of class C1 if all the first order partial derivatives exist and
are continuous.

By Theorem 40 functions of class C1 are differentiable. However, the converse need not be the case as when
a function is differentiable Theorem 40 guarantees only that the first order partial derivatives exist, but not
that they are continuous. An example of this is the function

f : R2 → R defined by f : (x, y) 7→


(x2 + y2) sin

(
1√

x2+y2

)
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
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which is differentiable at (0, 0) where also the first order partial derivatives exist but are not continuous.

(31.2.4) Functions Into Rm

Theorem 43 Let f : A → Rm and a ∈ A ⊆ Rn. f is differentiable at a if and only if each co-ordinate function
fi : A → R is differentiable at a. In this case

D f (a) =


∇ f1(a)
∇ f2(a)

...
∇ fm(a)

 =


D1 f1(a) D2 f1(a) . . . Dn f1(a)
D1 f2(a) D2 f2(a) . . . Dn f2(a)

...
...

. . .
...

D1 fm(a) D2 fm(a) . . . Dn fm(a)


Proof. (⇒) Suppose that f is differentiable with derivative M = (aij), an m× n matrix. Write

M =

 M1
M2

...
Mm

 with Mi = (ai1, ai2, . . . , ain)

Since f is differentiable at a, for h ∈ Rn, ∀ε > 0, ∃δ > 0 such that for 0 < ‖h‖ < δ

‖ f (a + h)− f (a)− Mh‖ < ε‖h‖

Hence

| fi(a + h)− fi(a)− Mih| 6

√√√√ m

∑
j=1

(
f j(a + h)− f j(a)− Mjh

)2

= ‖ f (a + h)− f (a)− Mh‖

< ε‖h‖

and thus fi is differentiable at a with derivative Mi. By Theorem 40

Mi = ∇ fi(a) = (D1 fi(a), D2 fi(a), . . . , Dn fi(a))

(⇐) Suppose that each of the co-ordinate functions is differentiable at a, then by Theorem 40 D fi(a) =
∇ fi(a). For any ε > 0, ε√

m > 0 so for each i, ∃δi > 0 such that for 0 < ‖h‖ < δi,

| fi(a + h)− fi(a)−∇ fi(a)h| < ε√
n

Hence taking δ < min16i6n δi,

‖ f (a + h)− f (a)− Mh‖ =

√
m

∑
i=1

( fi(a + h)− fi(a)−∇ fi(a)h)2

<

√√√√ m

∑
i=1

(
ε√
m

)2
‖h‖2 = ε‖h‖

and hence f is differentiable at a with derivative M = (∇ fi(a)). �

Definition 44 For f : A → Rn where A ⊆ Rm, if the partial derivatives Dj fi(a) exist then the Jacobian matrix of f



31.2. DIFFERENTIATION 15

at a is

J f (a) =


D1 f1(a) D2 f1(a) . . . Dn f1(a)
D1 f2(a) D2 f2(a) . . . Dn f2(a)

...
...

. . .
...

D1 fm(a) D2 fm(a) . . . Dn fm(a)


Theorem 45 If f : A → Rm where A ⊆ Rm, f is of class C1 then f is differentiable at all a ∈ A, and D f (a) = J f (a).

Proof. Immediate from Theorem 40 and Theorem 43. �

Theorem 46 (Chain Rule) Let f : A → Rm with A ⊆ Rn. Let g : B → Rl with f (A) ⊆ B ⊆ Rm. Then if f
is differentiable at a ∈ A and g is differentiable at f (a) = b ∈ B the the composite function g ◦ f : A → Rl is
differentiable at A with derivative D(g ◦ f )(a) = Dg(b)D f (a).

Note that D f (a) is an m× n matrix, Dg(b) is an l ×m matrix, and D(g ◦ f )(a) is an l × n matrix.

Proof. It is required to show that ∀ε > 0 ∃δ > ) such that

0 < ‖h‖ < δ ⇒ ‖g ◦ f (a + h)− g ◦ f (a)− Dg(b)D f (a)h‖ < ε‖h‖

Now,

‖g ◦ f (a + h)− g ◦ f (a)− Dg(b)D f (a)h‖

= ‖g ◦ f (a + h)− g ◦ f (a)− Dg(b)( f (a + h)− f (a))

+ Dg(b)( f (a + h)− f (a))− Dg(b)D f (a)h‖

6 ‖g ◦ f (a + h)− g ◦ f (a)− Dg(b)( f (a + h)− f (a))‖+ N‖ f (a + h)− f (a)− D f (a)h‖ (47)

where N = ‖Dg(b)‖.

Now, for ε > 0 and N > 0, ε
2N > 0 and so by the differentiability of f , ∃δ1 > 0 such that

0 < ‖h‖ < δ1 ⇒ N‖ f (a + h)− f (a)− D f (a)h‖ <
ε

2
‖h‖ (48)

Moreover, if N = 0 then N‖ f (a + h)− f (a)− D f (a)h‖ < ε
2‖h‖ for any δ1.

Let k = f (a + h)− f (a) ∈ Rm and M = ‖D f (a)‖. As f is differentiable at a, choose ε = 1 in the definition of
differentiability, then ∃δ2 such that for 0 < ‖h‖ < δ2

‖ f (a + h)− f (a)‖ = ‖ f (a + h)− f (a) − D f (a)h + D f (a)h‖

6 ‖ f (a + h)− f (a)− D f (a)h‖+ M‖h‖

< (1 + M)‖h‖

i.e., ‖k‖ < (1 + M)‖h‖. Now by the differentiability of g at b, ε
2(1+M) > 0 and ∃δ3 > 0 such that

0 < ‖k‖ < δ3 ⇒ ‖g(b + k)− g(b)− Dg(b)k‖ <
ε

2(1 + M)
‖k‖ (49)

Hence for
δ < min

{
δ1, δ2,

δ3
1 + M

}
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when 0 < ‖h‖ < δ, in equation 47

‖g ◦ f (a + h)− g ◦ f (a)− Dg(b)D f (a)h‖

6 ‖g ◦ f (a + h)− g ◦ f (a)− Dg(b)( f (a + h)− f (a))‖+ N‖ f (a + h)− f (a)− D f (a)h‖

<
ε

2(M + 1)
‖k‖+

ε

2
‖h‖ by euqation (48) and equation (49)

= ε‖h‖ �

(31.3) Generalising Analytical Results

(31.3.1) The Mean Value Theorem

Recall that if f : [a, b] → R is differentiable, then the Mean Value Theorem states that ∃c ∈ (a, b) such that

f (b)− f (a)
b− a

= f ′(c)

If this holds, then | f (b)− f (a)| = | f ′(c)||b − a|, and so if | f ′(c)| 6 M for all x ∈ [a, b] then | f (b)− f (a)| <

M|b− a| for all x ∈ [a, b]. This is in the form of Theorem 29 (Contraction Mapping). It a result of this form
that can be generalised.

Definition 50 Let x, y ∈ Rn define
[x, y] = {(1− t)x + ty | 0 6 t 6 1}

Theorem 51 (Generalised Mean Value) Let f : A → Rm be a differentiable function with A ⊆ Rn. If a, b ∈ A with
[a, b] ⊆ A and ∃M such that ‖D f (x)‖ 6 M ∀x ∈ [a, b] then ‖ f (b)− f (a)‖ 6 M‖b− a‖.

Proof. If f (a) = f (b) then there is nothing to show. Suppose therefore that this is not so, and define

u =
f (b)− f (a)
‖b− a‖

Define
F : [0, 1] → R by F : t 7→ u · f (a + t(b− a))

where the dot denotes the inner product on Rm. Using the standard inner product,

F(t) =
m

∑
i=1

ui fi(a + t(b− a)) where f = ( f1, f2, . . . , fm) and ui =
fi(b)− fi(a)
‖b− a‖

Hence F may be written as a composition F = h ◦ f ◦ g where

g : [0, 1] → Rn f : Rn → Rm h : Rm → R

g : t 7→ a + t(b− a) f : x 7→ f (x) h : x 7→ u · x

Now, g is differentiable with derivative Dg(t) = b − a, and f is differentiable by hypothesis. h is also
differentiable, as follows

h(x) = u1x1 + u2x2 + · · ·+ umxm

Dh(x) = (D1h(x), D2h(x), . . . , Dmh(x))

= (u1, u2, . . . , um) = u
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Hence by Theorem 46 (the Chain Rule) F is differentiable with derivative

DF(t) = F′(t) = Dh( f ◦ g(t))D f (g(t))Dg(t)

= uD f (a + t(b− a))(b− a)

Now applying the Mean Value Theorem for F on [0, 1], ∃c ∈ [0, 1] such that

F(1)− F(0)
1− 0

= F′(c)

F(1)− F(0) = F′(c)

u · f (b)− u · f (a) = uD f (a + c(b− a))(b− a) (52)

so |u · f (b)− u · f (a)| = |uD f (a + c(b− a))(b− a)|

6 ‖u‖‖D f (a + c(b− a))‖‖b− a‖

= ‖D f (a + c(b− a))‖‖b− a‖ (53)

with the last line following because

‖u‖ = ‖ f (b)− f (a)
‖ f (b)− f (a)‖ ‖ =

‖ f (b)− f (a)‖
‖ f (b)− f (a)‖ = 1

Returning to equation (52), the left hand side is

u · f (b)− u · f (a) = u · ( f (b)− f (a))

=
m

∑
i=1

ui ( fi(b)− fi(a))

=
m

∑
i=1

fi(b)− fi(a)
‖ f (b)− f (a)‖ ( fi(b)− fi(a))

=
1

‖ f (b)− f (a)‖
m

∑
i=1

( fi(b)− fi(a))2

= ‖ f (b)− f (a)‖

By hypothesis ‖D f (x)‖ 6 M for all x ∈ [a, b] and so equation (53) gives

‖ f (b)− f (a)‖ 6 M‖b− a‖

as required. �

A more direct generalisation of the Mean Value Theorem is available when f : A → R.

Corollary 54 If f : A → R is differentiable with [a, b] ⊆ A ⊆ Rn then ∃c ∈ (a, b) such that

f (b)− f (a) = D f (c)(b− a)

Proof. Put u = (1) (which can be done since F is still a function into R) then equation (52) gives

f (b− f (a) = D f (a + c(b− a))(b− a)

Hence the result, where c = a + c(b− a). �
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The Mean Value Theorem cannot be generalised in this way for functions into Rm where m > 2. Take for
example the function f (x) = ( cos x, sin x). Then D f (x) = (− sin x, cos x)> and so ‖D f (x)‖ = 1. However,
on the interval [0, 2π] say,

f (2π)− f (0) = (0, 0) 6= ‖D f (x)‖(2π − 0) = 2π

Definition 55 A non-empty subset A of Rn is called convex when if x, y ∈ A then [x, y] ⊆ A.

Corollary 56 If f : A → Rm is differentiable on A which is a convex subset of Rn, and ‖D f (x)‖ 6 M for all x ∈ A
then for any a, b ∈ A, ‖ f (b)− f (a)‖ 6 M‖b− a‖.

Proof. Simply apply Theorem 51 to f on [a, b]. �

Note that if M < 1 then this corollary gives the conditions to apply Theorem 29 (Contraction Mapping
Theorem).

(31.3.2) Taylor’s Theorem

Definition 57 A function f : A → R where A ⊆ Rn is said to be of class Cr if all the partial derivatives up to and
including those of order r exist and are continuous.

Definition 58 Define the operator x · ∇ to act on a function g : A → R where A ⊆ Rn as follows:

(x · ∇)g(b) =
n

∑
i=1

xiDig(b)

This is the inner product of x with the gradient of g at b.

Of course, this operator may be applied more than once. For example

(x · ∇)2 f (a + tx) = (x · ∇)
n

∑
i=1

xiDi f (a + tx)

=
n

∑
i=1

xi(x · ∇)Di f (a + tx)

=
n

∑
i=1

n

∑
j=1

xixjDjDi f (a + ta)

If f is of class Cr then x · ∇ may be applied up to r times.

Lemma 59 Let f : A → R where A ⊆ Rn is of class Cr and define

F : [0, 1] → Rm by F : t 7→ f (a + tx)

Then F is r times differentiable with DsF(t) = (x · ∇) f (a + tx).

Note that F is defined on A whenever t is small enough: Since f is differentiable at all a ∈ A each a must
have an open ball around it that is contained in A. Hence taking t small enough ensures that F is properly
defined on A.

Proof. Since f is differentiable on A,

D f (a + tx) = ∇ f (a + tx) = (D1 f (a + tx), D2 f (a + tx), . . . , Dn f (a + tx))



31.3. GENERALISING ANALYTICAL RESULTS 19

For k ∈ R,

lim
k→0

∣∣∣∣ F(t + k)− F(t)
k

− xD f (a + tx)
∣∣∣∣ = lim

k→0

∣∣∣∣ F(t + k)− F(t)− D f (a + tx)kx
k

∣∣∣∣
Now write h = kx so h → 0 as k → 0 and ‖h‖ = |k|‖x‖ to give

= ‖x‖ lim
h→0

∣∣∣∣ f (a + tx + kx)− f (a + tx)− D f (a + tx)
‖h‖

∣∣∣∣
= 0 by the differentiability of f .

Hence

DF(t) = F′(t) = D f (a + tx)x

=
n

∑
i=1

xiDi f (a + tx)

= (x · ∇) f (a + tx)

Now, each partial derivative of f is also a function A → R, and so replacing f by Di f in the above argument
shows that

Di+1F(t) = (x · ∇)i+1 f (a + tx)

for 2 6 i 6 r− 1. �

Before stating and proving a generalised form of Taylor’s Theorem, recall the single variable case.

Theorem 60 (Taylor) Let a, x ∈ R be fixed and let f : [a, a + x] → R be continuously differentiable r− 1 times, and
suppose that the rth derivative exists. Then

f (a + x) = f (a) + x f ′(a) +
x2

2!
f ′′(a) + · · ·+ xr−1

(r− 1)!
f (r−1)(a) +

xr

r!
f (r)(a + θx)

for some 0 < θ < 1.

Theorem 61 (Generalised Taylor) Let F : A → R be of class Cr with a ∈ A ⊆ Rn and let x be some fixed point of
Rn. Then if the line segment [a, a + x] ⊆ A then there exists θ ∈ (0, 1) such that

f (a + x) = f (a) + (x · ∇) f (a) +
(x · ∇)2

2!
f (a) + · · ·+ (x · ∇)r−1

(r− 1)!
f (a) +

(x · ∇)r

r!
f (a + thetax)

Proof. Define F : [0, 1] → R by F(t) = f (a + tx) then since f is of class Cr so is F. Hence using Lemma 59
and Theorem 60

F(1) = F(0) + DF(0) +
D2F(0)

2!
+ · · ·+ Dr−1F(0)

(r− 1)!
+

DRF(θ)
r!

for some θ ∈ (0, 1)

i.e., f (a + x) = f (a) + (x · ∇) f (a) +
(x · ∇)2 f (a)

2!
+ · · ·+ (x · ∇)r−1 f (a)

(r− 1)!
+

(x · ∇)r f (a + θx
r!

�

(31.3.3) Other Generalised Results

Definition 62 A C1 function f : A → Rn where A ⊆ Rn is locally C1-invertible at a ∈ A if there exist open sets U1

and U2 with a ∈ U1 and a C1 function g : U2 → U1 such that g ◦ f (x) = x and f ◦ g(y) = y for all x ∈ U1 and



20 CHAPTER 31. MSMYP3 FUNCTIONS OF SEVERAL REAL VARIABLES

y ∈ U2.

Theorem 63 (Inverse Function) Let f : A → Rn be of class C1 and f (a) = b where a ∈ A ⊆ Rn. If D f (a) = M is
non-singular then f is locally C1-invertible at a with D f 1(b) = M−1.

Of particular interest is the ability generalise the definition of a norm while retaining most of the results
already proven. A norm can be defined on any real vector space, including ones of infinite dimension.

Definition 64 Let V be a real vector space, then a norm on V is a function ‖ · ‖ : V → R such that for any v, w ∈ V
and λ ∈ R,

N1. ‖v‖ > 0 with equality if and only if v = 0.

N2. ‖λv‖ = |λ|‖v‖.

N3. ‖v + w‖ 6 ‖v‖+ ‖w‖.

Example 65 The uniform norm on Rn is defined by

‖x‖∞ = max
i6i6n

|xi|

where x = (x1, x2, . . . , xn). Show that this is indeed a norm.

Proof. Solution Verifying the axioms in turn,

N1. Certainly |xi| > 0 for all 1 6 i 6 n and hence ‖x‖∞ > 0. Also, it is clear that ‖x‖∞ = 0 ⇔ xi = 0 for
1 6 i 6 n, i.e., x = 0.

N2. Say ‖x‖∞ = xj then

‖λx‖∞ = max
i6i6n

|λxi| = |λ| max
i6i6n

|xi| = |λ||xj| = λ‖x‖∞

N3. Suppose ‖x‖∞ = xj and ‖y‖∞ = yk. Then

‖x + y‖∞ = max
16i6n

|xi + yi|

= |xl + yl | say

6 |xj|+ |yk|

= ‖x‖∞ + ‖y‖∞ �

The uniform norm can be generalised slightly to work on the infinite dimensional vector space of continuous
functions of [0, 1] → R, C[0, 1]. Define

‖ f ‖∞ = sup
x∈[0,1]

f (x)

An alternative norm for C[0, 1] is the L1-norm,

‖ f ‖1 =
∫ 1

0
| f (x)| dx

Definition 66 Two norms ‖ · ‖1 and ‖ · ‖2 on a vector space V are equivalent if ∃m, M ∈ R+ such that

m‖v‖1 6 ‖v‖2 6 M‖v‖1 ∀v ∈ V
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Figure 1: The L1 norm and the uniform norm are not equivalent on infinite dimensional vector
spaces.

On Rn then Euclidean norm and uniform norms are equivalent. Observe that

‖x‖∞ = max
16i6n

|xi| 6
√

x2
1 + x2

2 + · · ·+ x2
n = ‖x‖

and if ‖x‖∞ = |xj| then

‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n 6

√
nx2

j =
√

n‖x‖∞

Hence ‖x‖∞ 6 ‖x‖ 6
√

n‖x‖∞ so the Euclidean and uniform norms are indeed equivalent.

Theorem 67 All norms on Rn are equivalent.

However, the same result need not hold for infinite dimensional vector spaces. On C[0, 1],

‖ f ‖1 =
∫ 1

0
| f (x)| dx 6

∫ 1

0
sup

x∈[0,1]
| f (x)| dx 6 sup

x∈[0,1]
| f (x)| = ‖ f ‖∞

However, there is no general inequality in the other direction. Consider the function shown in Figure 31.3.3.
Here ‖ f ‖∞ = 1, but ‖ f ‖1 is equal to the shaded area, which may be made arbitrarily small by reducing the
width of the base of the peak.

Cauchy sequences may be defined on any normed vector space, and Cauchy sequences are convergent with
proof as for Theorem 12. However, Cauchy sequences do not necessarily converge in an arbitrary normed
vector space.

Definition 68 A normed vector space V is said to be complete, or a Banach Space, if every Cauchy sequence in V
converges to a limit in V.

By Theorem 12 and Theorem 67 Rn with any norm is complete.
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