
Chapter 33

MSMYM1 Mathematical Linear

Programming

(33.1) The Simplex Algorithm

The Simplex method for solving linear programming problems has already been covered in Chapter ??. A
given problem may always be expressed in the ‘standard’ form

f (x) → min Ax = b xj > 0 ∀j (1)

Say x is of length n and that there are m constraint equations (n > m), then the solution region is a convex
subset of Rn (see Chapter ?? for a discussion of convex sets):

Theorem 2 The set of feasible solutions to a linear programming problem in standard form with m equations in n
unknowns is a convex subset of Rn.

Theorem 3 The point x ∈ Rn is a basic feasible solution of (1) if and only if it is an extreme point of the solution
region.

Of the n variables m need to be chosen as a basis, and thus there are (n
m) basic feasible solutions.

Theorem 4 The optimal solution occurs at an extreme point, and if it occurs at more than one extreme point x1, x2, . . . , xk

say then any convex linear combination of these extreme points is also optimal, i.e.,

k

∑
i=1

λixi such that
k

∑
i=1

λi = 1 and 0 6 λi 6 1 for all 1 6 i 6 k

For example, if (x1, y1) and (x2, y2) are both optimal solutions to a linear programming problem with 2
variables, then any point on the line joining (x1, y1) and (x2, y2) is also optimal.

(33.1.1) Optimality

In the Simplex Algorithm optimality is checked using, not suprisingly, the “optimality cirterion”. This
is actually one of four criteria, depending on whether the problem is maximisation or minimisation, and
how the Simplex Table has been constructed. To this end it is prudent to clarify the situation. (Note that
zj = c>B B−1Aj.)

• If the linear programming problem is maximisation:

1
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– If the top row of the Simplex table is for− f (x) then it tabulates values of cj − zj and at optimality
these are negative (or zero).

– If the top row of the Simplex table is for f (x) then it tabulates values of zj − cj and at optimality
these are positive (or zero).

• If the linear programming problem is minimisation:

– If the top row of the Simplex table is for− f (x) then it tabulates values of cj − zj and at optimality
these are positive (or zero).

– If the top row of the Simplex table is for f (x) then it tabulates values of zj − cj and at optimality
these are negative (or zero).

Unfortunately there is no consistency as to which form is used, so these must be memorised. Note this mat
make more sense if read after Section 33.2.2.

(33.1.2) Finding An Initial Basic Feasible Solution

As already mentioned, there are some (n
m) basic feasible solutions. It is possible to find the optimal solution

by exhaustively trying all these solutions, though clearly this is not a satisfactory method. (This is called the
complete enumeration technique.)

The Simplex method is much preferable, though it is not clear how to find an initial basic feasible solution.
It would be possible to use the complete enumeration technique until a basic feasible solution is found, but
clearly this is not satisfactory. A sure-fire method is required.

To write a linear programming problem in standard form (with equality in the constraint equations) it is
necessary to introduce slack variables. In the case aix 6 bi a slack variable si will be added to give

ai1x1 + ai2x2 + · · ·+ ainxn + si = bi

This constraint can be satisfied by putting x = 0 and si = bi. However, with constraints of the form aix > bi

the slack variable is subtracted and as it must be positive this trick does not work. Similarly, when aix > bi

no slack variable is added.

To overcome this problem for each constraint equation of the form aix > bi or aix > bi introduce an artificial
variable ri. Hence, for example,

a11x1 + a12x2 + . . . a1nxn 6 b1 becomes a11x1 + a12x2 + . . . a1nxn + s1 = b1

a21x1 + a22x2 + . . . a2nxn > b2 becomes a11x1 + a12x2 + . . . a1nxn − s2 + r1 = b2

a31x1 + a32x2 + . . . a3nxn = b3 becomes a31x1 + a32x2 + . . . a3nxn + r2 = b3

In this form the problem has a trivial feasible solution: where an artificial variable is added, ri = bi, and
where no artificial variable is needed si = bi. The task now is to remove the artificial variables from the
solution, as they are meaningless. To do this one may procede with either the M-technique or the two phase
method. In both cases the idea is to modify the objective function so that the artificial variables are highly
undesirable.

M-technique

Having added slack and artificial variables use the new objective function c>x + ∑ Mri. For maximisation
M < 0 and for minimisation M > 0. This can now be used in the Simplex method, but in filling in the
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first table the cost coefficients of the basic variables are not all zero: some are M. In order to aviod this
the cosntrtaint equations can be used to substitute into the objective function and so eliminate the artificial
variables.

When running the Simplex algorithm many of the costs will be in terms of M. In choosing the pivot the
column in which the relative cost is least (for minimisation, most for maximisation) is chosen to pivot with.
The value of M is taken to be so large that there is a clear choice. Note that M is not a parameter: no case
analysis arrises.

If the artificial variables cannot be eliminated i.e., optimality is reached and the optimal solution contains an
artificial variable then the original problem was infeasible.

Two Phase Method

Rather than modifying the existing objective function as in the M-technique, the two phase method uses an
auxiliary objective function ∑ ri.

As in the M-technique the constraint equations must be used to elimitate the ri from the objective function so
that the Simplex algorithm can be used. Running the Simplex algorithm produces a basic feasible solution
in the non-artificial variables: the optimal value is 0. This is the first phase.

The second phase uses the basic feasible solution found by the first phase with the original opbjective func-
tion. However, note that it will be necessary to use the constraint equations (without the artificial variables)
to eliminate the basic variables from the objective function. With this done the Simples algorithm is run a
second time to give the optimal solution.

(33.1.3) Cycling, Degeneracy, and Finiteness

To find which row to pivot on the ratios bi
aij

are compared for the chosen column j. If two rows have the
same ratio then it is not clear which row should be chosen.

Suppose rows i and k have the same ratio. Then pivoting on row i gives

bk − akj
bi
aij

= bk − akj
bk
akj

= 0

and hence in the next iteration the solution becomes degenerate. Now, the degenerate variable may be cho-
sen to leave the basis but could equally well be replaced by another variable taking value 0, thus producing
another degenerate solution and having no effect on the value of the objective function. Continuing in this
manner gives an opportunity for cycling.

In the degenerate case, cycling can occur because there are many feasible solutions with the same objective
function value. Similarly, cycling may occur when there are multiple optimal solutions: obviously these
need not be degenerate.

As already mentioned, when there are multiple optimal solutions—at extrema of the solution region—a
family of optimal solutions can be constructed. Say that x is of length n, there are m constraint inequalities,
and that k slack and artificial variables are introduced. Now,

• The solution is in Rn

• Extreme points of the solution region occur at the intersection of n of the constraint inequalities. This
includes the constraints xi > 0.
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It is possible that more than m constraints and non-negativity constraints meet at an extreme point. When
this occurs, more than one basis gives the same solution: cycling occurs.

Cycling caused by degeneracy can be avoided. The method involves perturbing the bis so that in subsequent
Simplex tables the bis will be different and so aviod a tie. Firstly, a rather technical lemma is needed.

Lemma 5 If the first non-zero coefficient of a polynomial p(x) = a0 + a1x + · · · + anxn is greater than zero then
∃h > 0 such that 0 < x < h implies p(x) > 0.

Proof. Let ak be the first non-zero coefficient, and let

M = max
k6i6n

|ai|

Note that ak is the first non-zero coefficient of p, and assume that x > 0, then this gives

p(x) = xk
(

ak + ak+1x + · · ·+ anxn−k
)

> xk
(

ak − Mx − · · · − Mxn−k
)

> xk (ak − (m− k)Mx) for 0 < x < 1

Now, this polynomial is positive if and only if

ak > (m− k)Mx ⇔ x <
ak

(m− k)M

Hence choosing h < min
(

1, ak
(m−k)M

)
the result is shown. �

Now, consider a linear programming problem, which by the addition of slack or artificial variables may be
expressed in the form

x1 + x2 + · · ·+ xn → min

a11x1 + a12x2 + · · ·+ a1nxn + xn+1 = b1

a21x1 + a22x2 + · · ·+ a2nxn + xn+2 = b2

...

am1x1 + am2x2 + · · ·+ amnxn + xn+m = bm

For each constraint equation replace bi by bi + εi, then the initial solution xn+i = εi for 1 6 i 6 m and
xj = 0 otherwise is clearly non-degenerate. Furthermore, putting ” = 0 gives the original problem. The
new problem may be written as

c>x → min such that Ax = b + ”

The initial basis will typically be xB = (xm+1, xm+2, . . . , xn) so let B be the n× n submatrix of A with columns
corresponding to these initial basic variables and let B−1 = (βij). Furthermore, let AN be the matrix formed
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by the columns of A corresponding to non-basic variables, xN . Then

Ax = b(
B AN

)(xB

xN

)
= b

BxB + ANxN = b but B is non-singular, so

xB + B−1 ANxN = B−1b

This system is that which occurs after pivoting: the basic variables have identity matrix columns in the cost
coefficients matrix. The new value of b

b = B−1b so bi =
m

∑
j=1

βijbj

Return now to considering the perturbed problem. This gives

bi(ε) =
m

∑
j=1

βij(bj + εj) = bi +
m

∑
j=1

βijε
j

In the simplex table the βijs are the entries of the matrix whose columns are those of the original feasible
solution. In the first table this is always the identity matrix, though in subsequent iterations it becomes non
trivial.

Returning now to the original problem, the pivoting column has been chosen (j say) and now the pivot θ is
selected as

θ = min

{
bi
aij

| aij > 0 and xi ∈ xB

}
Say there is a tie on rows r and s. In the perturbed problem consider the comparrison

βr0
arj

T
βs0
asj

(6)

that is, the ratio except calculated with numerator as the number under the first initial basic variable in the
corresponding row. Now,

m

∑
j=1

βsjε
j −

m

∑
j=1

βrjε
j

is again a polynomial, and so by Lemma 5 if the first non-zero coefficient is greater than 0 then the polyn-
imoal is positive for sufficiently small ε. Therefore make the comparrison in equation (6) for increasing
values of j until inequality is reached. The lesser value is then chosen to for the row of the pivot.

(33.1.4) Revised Simplex Method

Overview

The Simplex method involves many calcuations, and while the final Simplex table is useful the intermediate
ones are of negligible interest. The revised Simplex method reduces the ammount of calculations required
by using only the ‘business end’ of the simplex table and disregarding the rest. Given a linear programming
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problem in standard form,

z = c>x → max(
A I

)
x = b

x > 0

The variables of the problem are partitioned as follows.

• Let x(1) be the original variables of the problem i.e., no slack or artificial variables.

• Let x(2) be the initial basic variables (which will be selected from the slack and artificial variables)

No variables will be missing from this decomposition of x since all the artificial variables are used in the
initial basis. Let c(1) and c(2) be the corresponding cost vectors. The problem may then be written in the
form (

1 −(c(1))> −(c(2))>

0 A I

) z
x(1)

x(2)

 =

(
0
b

)

Let
(

A I
)

= A′ and have jth column A′
j. In the usual way A′ may be partitioned as A′

B and A′
N corre-

sponding to basic and non-basic variables so that

A′x = b ⇔
(

A′
B A′

N

)(xB

xN

)
= b

From this

xB = (A′
B)−1b− (A′

B)−1 A′
nxn

z = c>B xB + c>NxN

= c>B
(

(A′
B)−1b− (A′

B)−1 A′
nxn

)
+ c>NxN

= c>B (A′
B)−1b−

(
c>B (A′

B)−1 A′
n − c>N

)
cN

But for any given basis xN = 0 and thus

xB = (A′
B)−1b

z = c>B (A′
B)−1b

= c>B xB
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z x(1) x(2) Solution
z 1 c>B B−1 A− c(1) c>B B−1 − c(2) c>B B−1b

xB 0 B−1 A B−1 B−1b

Table 1: The Simplex table at any stage.

Putting A′
B = B, this can be expressed in matrix form as(

1 −c>B
0 B

)(
z

xB

)
=

(
0
b

)

⇒
(

z
xB

)
=

(
1 −c>B
0 B

)−1(
0
b

)

=

(
1 −c>B B−1

0 B−1

)(
1 −(c(1))> −(c(2))>

0 A I

) z
x(1)

x(2)



=

(
1 c>B B−1 A− c(1) c>B B−1 − c(2)

0 B−1 A B−1

) z
x(1)

x(2)


Hence for any given basis cB the state of the system i.e., the components of the Simplex table can be ex-
pressed in terms of the initial basis and original variables. The Simplex table will be of the form given in
Table 1.

From these calcuations it is apparent that any Simplex table can be found, given the initial state of the
system, and the matrix B−1.

Updating B−1

In the case of the Simplex method at some general iteration a basic variable xr is removed in favour of some
non-basic variable xs say. It can be shown that B−1 is updated as

B−1 := EB−1 where E =
(

e1 e2 . . . er−1 K er+1 . . . em

)
where ei is the ith standard ordered basis vector and K is calcualted as follows. Calculate As = B−1As and
let

K =
(
−a1s
ars

−a2s
ars

. . . −a(r−1)s
ars

1
ars

−a(r+1)s
ars

. . . −ams
ars

)>
The remaining question is as to which variable should leave the basis and which should enter i.e., the values
of r and s. To determine the variable to enter the basis the optimality criterion is used.

Variable Entering The Basis

As usual the variable to enter the basis is that which violates the optimality criterion. The reduced cost
c>B B−1Aj − cj is examined, and a matrix of these can be computed as

(z− c)N =
(
−1 c>B B−1

)(−c>N
AN

)
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where c>N is the row vector of cost coefficients of the non-basic variables, and AN is the matrix of columns
of A of the non-basic variables.

Taking the minimum (for a maximisation problem) or maximum (for a minimisation problem) will reveal
the index of the non-basic variable that will enter the basis.

Variable Leaving The Basis

The variable leaving the basis is chosen so that no basic variable becomes negative and the leaving variable
becomes zero. Let xs be the variable that enters the basis. The pivot is computed as

θ = min
i basic

{
(B−1b)i

(B−1As)i
| (B−1As)i > 0

}

(33.2) Duality

(33.2.1) Constructing The Dual

Noting that the dual to the dual is the primal, writing a linear programming problem in a suitable form
allows its dual to be formed from Table 2.

Primal Problem Description Of Indices Dual Problem
cTx → min bTß → max

aT
i x = bi i ∈ I πi free

aT
i x > bi i ∈ I πi > 0
xj > 0 j ∈ J ßTAj 6 cj
xj free j ∈ J ßTAj = cj

Table 2: Correspondence between the primal and dual linear programming problems.

It is necessary to write a linear programming problem in one of these forms before attempting to determine
the dual (note the dual of the fual is the primal, so Table 2 can be used ‘backwards’).

(33.2.2) Connections Between The Dual And The Primal

A linear programming problem is closely connected to its dual, and a solution to one gives information
about the solution of the other. This ins encapsulated in the duality theorems, and is exploited in the Primal-
Dual algorithm (see Section 33.2.2).

Theorem 7 (Weak Duality Theorem) ∀x ∈ MP ∀ß ∈ MD cTx > ßTB i.e., for all feasible solutions, f (x) >

φ(ß).

Proof. Now, specifically for j ∈ J, cj > ßTAj. However, when j ∈ J there is equality, so the relationship
holds in general. Similarly bi 6 aT

i x. Hence,

f (x) = cTx = ∑
j

cjxj φ(ß) = ßTb = ∑
i

πibi

> ∑
j

ßTAjxj 6 ∑
i

πia
T
i x

= ßT Ax = ßT Ax �
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Theorem 8 If x is an optimal solution to a linear programming problem and f (x) = c>x is finite, then an optimal
solution to the dual is c>B B−1.

Proof. Note the ambiguity of notation where B−1 is a matrix and B is the set of basic indices. Now, for j /∈ B,
xj = 0 and hence for any solution x of the primal,

f (x) = c>B B−1b− ∑
j/∈B

(c>B B−1Aj − cj)xj

= c>B B−1b− ∑
j/∈B

(zj − cj)xj

where zj is known as the “simplex multiplier” and cj − zj is known as the “reduced cost” or “relative cost”.
If B is the set of basic indices for an optimal solution then

zj − cj =

0 if j ∈ B

c>B b−1Aj − cj if j /∈ B

Hence

zj − cj > 0 ⇔ c>B B−1Aj − cj > 0

⇔

c>B B−1Aj − cj > 0 if j /∈ B and is the index of an original variable

c>B B−1 if j /∈ B and is the index of a slack or artificial variable

because if j is the index of a slack or artificial variable that was in the original basis then Aj = ej and cj = 0.
Hence

c>B B−1Aj > cj and c>B b−1 > 0

i.e., c>B B−1 is a feasible solution to the dual. But

f (x) = c>x = c>B xB = c>B B−1b

which is the value of the objective function of the dual. Since this coincides with the value of the objective
function of the primal Theorem 7 (Weak Duality) shows that c>B B−1 is an optimal solution to the dual. �

The “reduced costs” are located in the final simplex table, as shown in Table 1. For the basic variables they
are all zero and for the non-basic variables they are positive. By the proof of Theorem 8 the optimal Simpex
table for the primal can be used to calculate the optimal solution to the dual. Take the “reduced costs” in
the original basic positions, then

πj = c>B B−1ej = zj(zj − cj) + cj

Usually the costs cj are zero, so that the solution can be read off from the tabe easily.

The following important result now follows readily.

Theorem 9 (Strong Duality) If a linear programming problem or its dual has a finite solution then so does the other
and the optimal values are equal.

Proof. Immediate from Theorem 8. �



10 CHAPTER 33. MSMYM1 MATHEMATICAL LINEAR PROGRAMMING

(33.2.3) Interpreting Dual Variables

As well as the strong mathematia relationship between a linear programming problem and its dual, there is
also a connection in the interpretation of the variables and constraints.

Does anybody know what it is?

Section 33.3 gives methods for analysing how changes in the original problem effect the solution. However,
the relationship between a linear pprogramming problem and its dual allows the identification of the con-
straints which will effect the solution: clearly, in practical situations the constraints effecting the solution
will be of particular itnerest.

Consider a linear programmig problem and its dual

c>x → max y0 = y>b → min

Ax 6 b A>y > c

x > 0y > 0

Consider changing bi to b′i = bi + ∆bi. Then

y′0 = y0 +
m

∑
i=1

yi∆bi

Also, under this transformation the primal solution will remain optimal since zj − cj = c>B B−1Aj − cj is not
effected by changes in b. However, the feasibility of the solution may change since it is not necessarily the
case that xB = B−1b′ > 0.

Certainly the solution will still be feasible for a sufficiently small change, i.e., ∃′ε > 0 such that if ‖∆b‖ < ε

then B−1(b + ∆b) > 0.

Now, yi is the change in objective function per unit change in bi, so that roughly speaking

∂y0
∂bi

= yi

This may be used in a number of ways.

• If yi > 0 one could seek to increase bi in order to increase the value of the objective function.

• If i is the index for which yi is the largest positive dual variable then increasing bi will give the most
increase in the objective function.

While doing this it is required to maintain feasibility.

Complementary Slackness Theorem

(33.2.4) Dual Simplex Method

The simplex method works by finding a sequence of feasible solutions with non-decreasing deviation from
optimality. Alternatively, roughly speaking, a sequence of optimal solutions with non-decreasing feasibility
could be found. This is what the dual simplex method does. Consider a linear programming problem and
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its dual,

c>x → min y>b → max

Ax 6 b A>y > c

x > 0 y > 0

Now consider changing b to another vector b(1) say. Modifying the final Simplex table by entering xB =
B−1b(1) instead of xB = B−1b, if B−1b(1) > 0 then the solution is still feasible. As the reduced costs have not
been changed the table now gives an optimal solution to the modifieed problem.

If however B−1b(1) has negative entries then the solution is nolonger feasible. However, c>B is still a feasible
solution to the dual though it will not be optimal. The Simplex algorithm may therefore be run on the dual
and in fact this can be done in the table for the primal: this constitutes the dual Simplex algorithm. Let
(B−1b(1))i = bi and cj = cj − c>B B−1Aj.

1. Select for the pivoting row r where br = min{bi | bi < 0}. Note that since xB = B−1b(1) row r is that
of the most negative basic variable.

2. For any column k, pivoting arround ark (where the bar denotes that the value is in the previously
optimal Simplex table, not the original problem) optimality must be maintained. Let c′j be the value
replacing cj after pivoting. To maintain optimality it is required that

c′j > 0

cj − ck
arj

ark
> 0

and this must be so for all j.

(33.3) Post Optimality Analysis

Having obtained an optimal solution it is often of interest as to how the optimal solution would change
depending on changes in b, c, or in A. If only few changes are made then it is possible to re-calculate an
optimal solution without much work.

It is possible to consider changes in single values, in which case a single iteration of the Simplex method
(or Dual Simples method) is often sufficient to find a new optimal feasible solution. The approach adopted
here is to consider many changes at once, seeking bounds within which the solution remains feasible and
optimal.

(33.3.1) Changes In c

Say c 7→ c + θE for some E ∈ Rn. Now, the solution is calculated as B−1b which is not effected by changes
in c, hence feadibility is not effected by changes in c.

Suppose that an optimal solution is known for θ = α (frequently α = 0) and consider θ = β. The theory will
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be developed for β > α with comments on how to adapt for β < α. Now,

c(θ) = c + θE

= c + (θ − α)E + αE

= c(α) + (θ − α)E

Now put z(θ)
j = (c(θ)

B )>(B(α))−1Aj and assume that the linear programming problem under consideration is
maximisation with zj − cj tabulated. Now,

z(θ)
j − c(θ)

j = (c(θ)
B )>(B(α))>Aj − c(θ)

j

= (c(α)
B )>(B(α))>Aj + (θ − α)E>B (B(α))>Aj − c(α)

j − (θ − α)Ej

=
(

z(α)
j − c(α)

j

)
+ (θ − α)

(
E>B (B(α))>Aj − Ej

)
(10)

But θ − α > 0 and optimality is certainly maintained when

E>B (B(α))>Aj − Ej > 0

(less than or equal to for θ < α because θ − α < 0). Of course there may be certain values of j for which this
criterion is not met then equation (10) gives

0 6 z(θ)
j − c(θ)

j

0 6
(

z(α)
j − c(α)

j

)
+ (θ − α)

(
E>B (B(α))>Aj − Ej

)
θ 6 α +

−(z(α)
j − c(α)

j )

E>B (B(α))−1Aj − Ej
where E>B (B(α))−1Aj − Ej < 0

β = α + min
16j6n

 −(z(α)
j − c(α)

j )

E>B (B(α))−1Aj − Ej
| E>B (B(α))−1Aj − Ej < 0


Note that for a minimisation problem with zj − cj tabulated that θ − α 6 0 and then

β = α + max
16j6n

 −(z(α)
j − c(α)

j

E>B (B(α))−1Aj − Ej
| E>B (B(α))−1Aj − Ej > 0


which is in fact the same as in the maximisation problem when θ < α. For θ > β the solution is nolonger
optimal, and the Simplex method may be used to find a new optimal solution. This process may then be
repeated to find at what point the new solution is nolonger optimal.

(33.3.2) Changes in b

Say b 7→ b + θø for some ø ∈ Rm. Now, the reduced costs are calculated as c>B B−1Aj − cj which is not
effected by changes in b, hence optimality is not effected by changes in b.

Suppose that an optimal solution is known for θ = α (frequently α = 0) and consider θ = β. The theory will
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be developed for β > α with notes on how to adapt for β < α. Now,

b(θ) = b + θø

= b + (θ − α)ø + αø

= b(α) + (θ − α)ø

Now put x(θ)
B = (B(α))−1b(θ) then

x(θ)
B = (B(α))−1b(θ)

= (B(α))−1(b + θø)

= (B(α))−1b(α) + (θ − α)(B(α))−1ø (11)

But θ − α > 0 and therefore to maintian feasibility it is required that(
(B(α))−1ø

)
i
> 0 for all basic indices i

(this becomes less than or equal to when θ < α because θ − α < 0). Of course there may be certain values of
i for which this criterion is not met then equation (11) gives

x(θ)
B > 0(

(B(α))−1ø
)

i
> 0 i basic

θ 6 α +
−
(

(B(α))−1b(α)
)

i(
(B(α))−1ø

)
i

i basic and
(

(B(α))−1ø
)

i
< 0

β = α + min
i basic

−
(

(B(α))−1b(α)
)

i(
(B(α))−1ø

)
i

|
(

(B(α))−1ø
)

i
< 0


There is no change in this condition for a minimisation problem, indeed no assumption was made about the
kind of problem this was. However, for θ < α,

β = α + max
i basic

−
(

(B(α))−1b(α)
)

i(
(B(α))−1ø

)
i

|
(

(B(α))−1ø
)

i
> 0


When θ > β a new solution will have to be calculated, and since feasibility is violated this can be done with
the dual Simplex method.

(33.3.3) Changes In A

Say Aj 7→ Aj + θøj for some øj ∈ Rm. Now, the initial basis consists of variables that are not part of the
original problem. Therefore B−1 is uneffected by changes in A. Since the solution is calculated as B−1b
(which is not effected by changes in Aj) feasdibility is not effected by changes in Aj.

Suppose that an optimal solution is known for θ = α (frequently α = 0) and consider θ = β. The theory will
be developed for β > α and notes made for how to adapt for θ < α. Now,

A(θ)
j = Aj + θøj

= A(α)
j + (θ − α)øj
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Now put z(θ)
j = c>B (B(α))−1A(θ)

j and assume that the linear programming problem under consideration is
maximisation with zj − cj tabulated. Now,

z(θ)
j − cj = c>B B−1A(θ)

j − cj

= c>B B−1
(

A(α)
j + (θ − α)øj

)
=
(

c>B B−1A(α)
j − cj

)
+ c>B B−1(θ − α)øj

=
(

z(α)
j − cj

)
+ (θ − α)c>B B−1øj (12)

But θ − α > 0 and therefore optimality is certainly maintained when

c>B B−1øj > 0

(this is less than or equal to for θ < α because in this case θ − α < 0). Of course there may be certain values
of j for which this criterion is not met then equation (12) gives

z(θ)
j − cj > 0(

z(α)
j − cj

)
+ (θ − α)c>B B−1øj > 0

θ 6 α +
−(z(α)

j − cj)

c>B B−1øj
where c>B B−1øj < 0

β = α + min
16j6n

−(z(α)
j − cj)

c>B B−1øj
| c>B B−1øj < 0


Note that for a minimisation problem with zj − cj tabulated that θ − α < 0 and then

β = α + max
16j6n

−(z(α)
j − cj)

c>B B−1øj
| c>B B−1øj > 0


For θ > β the solution is nolonger optimal, and the Simplex method may be used to find a new optimal
solution. This process may be repeated to find at what point the new solution is nolonger optimal.

(33.3.4) Changes In c, In b, And In A

When c, b, and A are all changing, values of θ will be obtained for each. This gives rise to a case analysis.

(33.3.5) New Variables And New Constraint Equations

If a new variable is added, then it will only effect the solution if its inclusion in the basis could improve the
value of the objective function i.e., it violates the optimality criterion. For a new variable xn+1 calculate

zj − cj = c>B B−1An+1

where An+1 are the coefficients of the new variable in the constraint equations. If this violates the optimality
criterion then the Simplex method can be applied.

If an additional constraint is not violated then it has no effect on the solution. If however it is violated then
a new solution must be calculated.
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1. Write the new constraint in terms of non-basic variables. This can be done using the other constraints.

2. Add a slack variable to the new constraint, and add it to the previously optimal Simplex table in a
new row, the slack variable taking the value of the right hand side of the new constraint inequality.

3. Using the Simplex method, the slack variable of the new constraint inequality will be removed from
the basis in favour of some other variable. An optimal solution will be found.
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