
Chapter 20

MSMYGF Mathematics Of Finance

(20.1) Statistical Considerations

Modelling of financial processes is done using differential equations which also take into account random-
ness. The randomness is expressed using statistical (or rather probabilistic) techniques, so it is first necessary
to introduce these.

(20.1.1) σ Algebra

As was the case in Chapter 6 probability is thought of as a function P acting on a set of events F which
consists of subsets of the sample space Ω. It is necessary for the elements of F to have certain properties. It
is these properties which define F as a σ algebra.

Definition 1 Let Ω be a set and let F be a set of subsets of Ω. F is a σ algebra on Ω if

1. ∅ ∈ F

2. F ∈ F ⇒ Fc ∈ F

3. A1, A2, · · · ∈ F ⇒ ⋃∞
i=1 Ai ∈ F

From DeMorgan’s laws it is readily seen that

∞⋂
i=1

Ai =

(
n⋃

i=1
Ac

i

)c

∈ F

The concept of a set of subsets of some other set is rather involved, and indeed somewhat abstract from
the elements of Ω, the elementary events. This is where σ algebrae are useful: they can be used to build
intricate structures for holding information. In the case of probability this relates to which elementary events
constitute a ‘real’ event.

Clearly the presence of a set A in a σ algebra dictates that Ω, ∅, and Ac must also be in the algebra. The set

{∅, Ω, A, Ac} = F (A) is called the minimal algebra of A. The smallest algebra is {∅, Ω} which is called the
trivial algebra or the degenerate algebra, and often denoted by O.

Definition 2 The pair (Ω,F ) is called a measurable space.

Readers familiar with measure and integration will feel quite at home with this. Other readers should just
accept this, as its importance is low. On a measurable space it is possible to define a measure (unsurpris-
ingly), and defining the probability measure P will yield the familiar probability space (Ω,F , P).
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(20.1.2) The Probability Space

Definition 3 A probability measure P on a measurable space (Ω,F ) is a function P : F → [0, 1] such that

1. P(∅) = 0

2. P(Ω) = 1

3. If A1, A2, · · · ∈ F and Ai ∩ Aj = ∅ for all i 6= j then P (
⋃∞

i=1 Ai) = ∑∞
i=1 P (Ai)

It is possible to define measures other than the probability measure. These differ by the omission of the
condition P(∅) = 0. Measures are in fact quite common. Distance in R, area in R2, volume in R3, and the
cardinality of A for A ∈ F are all examples of measures.

Enough information has now been presented to make meaningful the probability space (Ω,F , P). Note the
events—the subsets of Ω that are in F—are called F measurable. The probability space has the following
features

• Anything that happens in ‘real life’ corresponds to a single element ω ∈ Ω, an elementary event in
the sample space.

• Meaningful events are represented by collections of elementary events, the sets in F . These are called
events.

Note it is not the case that ∑Ai∈F P(Ai) = 1. This is because in general
⋃

Ai∈F Ai is not a disjoint union.
Note the word if in Definition 3.

Consider now some function Y : Ω → Rn. By taking elements from Ω it is implicit that some event in F is
chosen. The set {ω ∈ Ω | Y(ω) = x} for some fixed x ∈ Rn defines an event which may or may not be in F .
Y is said to be F measurable if these are always events. Formally,

Definition 4 Let U by any open subset of Rn. The function Y : Ω → Rn is called F measurable if

Y−1(U) = {ω ∈ Ω | Y(ω) ∈ U} ∈ F

In R this means that the set

{ω ∈ Ω | a < Y(ω) < b} ∈ F ∀a, b ∈ R, a < b

In fact it is more generally the case that if Y is measurable on the σ algebra G then {ω | X(ω) < X} ∈ G
∀x ∈ R.

Definition 5 A random variable X on a probability space (Ω,F , P) is an F measurable function X : Ω → Rn.

The condition of F measurability prevents X giving elementary events from the same event (in F ) different
values.

Now, P acts on F , so implicitly acts on some ω ∈ A ⊂ F . As X acts on Ω, there must be some function
f : Rn → R which somehow represents the probability of X assuming its various values.

The measure µX : Rn → R which corresponds to P is defined by µX(B) = P(X−1(U)). Because X is F
measurable X−1(U) ∈ F and so P(X−1(U)) is defined.

In the one dimensional case µX is the cumulative distribution function, FX(x). It represents the probability
that any of the ωs in X−1(B) happen, which translates to P(X 6 x). The probability density function is
defined to be the non-negative function f for which

∫
R

f (x) dx = 1 and FX(x) =
∫ x
−∞ f (y) dy.
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On the probability space on which they are defined all random variables are F measurable. However, it
may be the case that some of the sets in F are not required for measurability. This begs the question which
sets are required in F . The smallest σ algebra with respect to which a random variable X is measurable is
denoted F (X).

Example 6 Consider throwing two coins, so that Ω = {HH, HT, TH, TT}. Now let X be the random variable defined
by

X(ω) =

1 if the first coin is H

0 if the first coin is T

The smallest σ algebra defined by X is the set of subsets of Ω—not the set {H, T}—such that

{ω ∈ Ω | X(ω) = 1} ∈ F and {ω ∈ Ω | X(ω) = 0} ∈ F

In English, F (X) contains the subsets of Ω which start with a H, and the subsets which start with a T. F (X) =
{∅, Ω, {HH, HT}, {TT, TH}}.

Consider now a random variable Y defined in the same way but for the second throw of the coin. Now let Z = X + Y.
Hence

Z(ω) =


2 if ω = HH

1 if ω = HT or ω = TH

0 if ω = TT

F (Z) must contain {HH}, {HT, TH}, and {TT}, representing the 3 different cases. It must contain all possible
unions of these, as well as ∅, and Ω. This gives a total of 8 elements.

Most generally F = P(Ω), which has 16 elements in this case.

Definition 7 A stochastic process may be defined in terms of a set of random variables, {Xt}t∈T defined on a probability
space (Ω,F , P) which take values on Rn.

Observe that for fixed t, ω 7→ Xt(ω). However, fixing ω gives t 7→ Xt(ω). This is called a path of Xt.
Working in this way allows the behaviour of a particular ω in an experiment (say) to be modelled over time.
In this way ω defines a function ω : T → Rn given by t 7→ Xt(ω).

In this way, F now contains sets of functions which define subsets of Rn.

(20.1.3) Expectation

Definition 8 The expected value of a random variable X or any function g of X is defined as

E (X) =
∫

Ω
X(ω) dP(ω) =

∫
Rn

X dµX(X)

E (g(X)) =
∫

Ω
g(X(ω)) dP(ω) =

∫
Rn

g(X) dµX(X)

Note it is possible to calculate expectation over a subset of Ω i.e. what is the expected value if certain
elementary events are excluded? For A ⊂ Ω this gives E (X; A) =

∫
A X dP(X).

The linearity of the expectation operator follows from its definition in terms of integrals—the integration
operator is linear. Clearly the definition of expectation is not in the form familiar to statistics. The variable
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of integration must be changed from µX(X) to the real variable X (working in R).

FX(X) =
∫ x

−∞
f (x) dx

so
dFX
dx

= f (x)

by definition, E (X) =
∫

Rn
X dµX(X)

now substituting, =
∫ ∞

−∞
X f (x) dx but X = X(ω) = x

=
∫ ∞

−∞
x f (x) dx

This calculation is a bit confusing as x and X are used for very different things. The expectation has a few
important results.

Theorem 9 (Chebychev’s Inequality) With notation as used above, and any non-negative non-decreasing function f ,

P(X > a) 6
E f (X)

a

Theorem 10 (Jensen’s Inequality) Let c : G → R be a convex function on an open interval G ⊂ R. Let X be a random
variable of finite expectation and P(X ∈ G) = 1. Then

E c(X) > c( E X)

A convex function has the property c
(

x+y
2

)
6 1

2 f (x) + 1
2 f (y). The tangent line at any point lies wholly

below the function. For example f (x) = x2.

In considering stochastic processes sequences of random variables have been introduced. It is of interest,
therefore, when and how these sequences are convergent. Let {Xn} be a sequence of random variables

• Xn → X almost surely as n → ∞ if P(Xn → X) = 1.

• {Xn} is mean square convergent to X if limn→∞ |Xn −X| = 0. From this it can be shown that E Xn →
E X also.

Conditional Expectation

Mentioned after the definition of expectation was the possibility of finding expectation over only a subset
of Ω. This is used in the definition of conditional expectation.

Definition 11 Let (Ω,F0, P) be a probability space, let F ⊂ F0 be a σ algebra, and let X be a random variable that is
F0 measurable and of finite expectation. Define the random variable Y = E (X | F ) such that

1. Y is F measurable

2.
∫

A X dP =
∫

A Y dP ∀A ∈ F .

By excluding some of F0 the information available for finding E X is reduced. Consider the example of
throwing 2 coins and let X be the random variable defined by X(H) = 1 and X(T) = 0 for the first coin. Any
events relating to the second coin can be happily thrown away, but notice that doing so does not reduce the
portion of Ω being worked with—all 4 elementary events are still under consideration.
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If now Y is defined in the same way as X but for the second coin. Using the same reduced even space
(σ algebra) it is clear there is insufficient information to calculate E Y. It is, however, possible to calculate
E (Y | F ) where F is the reduced event space.

Conditional expectation has all the same properties as normal expectation with the addition of the following.

1. E ( E (X | F )) = E X

2. If F1 ⊂ F then

(a) E ( E (X | F1) | F ) = E (X | F1)

(b) E ( E (X | F ) | F1) = E (X | F1)

So the smaller σ algebra dictates the expectation.

3. If X ∈ G ⊂ F , X is G measurable, Y is a random variable of finite expectation, and E (XY) is finite
then E (XY | G) = X E (Y | G).

This last property holds because X is G measurable. Y on the other hand may not be.

Conditional Probability

Attention is drawn to conditional probability, Bayes Law, etc. In the context of σ algebrae, for B ∈ F define

FB = B ∩ F = {A ∩ B | A ∈ F}

Observe that FB is a set of sets of elementary elements. DeMorgan’s laws readily show that FB is itself a σ

algebra. Hence define the measure

P∗(A ∩ B) =
P(A ∩ B)

P(B)

So (B,FB, P∗) is a probability space. Ω has been reduced to B because of the wayFB is defined. Alternatively
simply define the conditional probability measure PB(A) = P(A | B). This yields the probability space
(Ω,F , PB).

Consider a partition of Ω, B1, B2, . . . . Now use the measure PBi to calculate the expectation of some random
variable X, ∗

E Bi (X) =
∫

X dPBi

(20.1.4) Martingales

Definition 12 A filtration is a sequence of σ algebrae such that

n 6 m ⇔ Fn ⊂ Fm

Considering the subscripts as time, more and more events are added as time increases. This relates to more
information being available in the sense that the event “the second coin is a head” can be happily ignored
until the second coin is thrown.

A natural filtration is one generated by a stochastic process Xt, so the σ algebrae will be F (Xt). Clearly for
a natural filtration, Xt is always Ft measurable, but for other filtrations this is not necessarily the case.

Definition 13 A family of random variables, Xt, is adapted to the filtration Fi if for each t, Xt is Ft measurable.
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Observe that if a random variable is adapted, then any function of that random variable which is itself a
random variable is also adapted to the same filtration. This is because taking a function effects the value
of the random variable, but not what elementary events produce which value. Measurability is therefore
maintained.

Definition 14 Let (Ω,F , P) be a probability space, let Fi be a filtration in F , and let Xt be a collection of random
variables that are adapted to Fi.

1. Xt is a martingale if E (Xt | Fs) = Xs whenever s 6 t.

2. Xt is a submartingale if E (Xt | Fs) > Xs whenever s 6 t.

3. Xt is a supermartingale if E (Xt | Fs) 6 Xs whenever s 6 t.

A martingale is an adapted collection of random variables with the property that the σ algebra Ft only
contains enough information to calculate the expected value of Xt and earlier random variables. Essentially,
this means that it isn’t possible to tell the future in advance of it happening.

To show that something is a martingale three properties must be verified: adaption, that E |Xn| are all finite,
and that one of the three martingale properties holds.

The practical situation is as follows. An experiment is performed and is done so sequentially. Each time a bit
more of the experiment is performed more events are ‘available’. However, Ft ( Ft+1 as the sample spaces
are completely different. For example when throwing two coins, after the first throw the elementary events
have only one letter—’H’ or ‘T’. After the second coin is thrown the elementary events have two letters.

Stopping Times

Definition 15 Let Ft for t ∈ I be a filtration in a set Ω. Define a function T : Ω → I such that for T(ω) 6 t, T is Ft

measurable. Then T is called a stopping time.

A stopping time is really a random variable: Depending on which ω ∈ Ω occurs, it will have different
values. If Xn is a martingale, then when t is the value of T obtained at a particular step in the sequence of
events

Xn∧T =

Xn if n < t

Xt if n > t

Suppose a martingale represents the value of shares. A stopping time could be used to decide when to
sell the shares and from this expected profit calculated. The question of optional stopping is therefore very
important.

Theorem 16 A stopped
(

super
sub

)
martingale is a

(
super
sub

)
martingale.

Theorem 17 (Optional Stopping) Let Xi be a supermartingale and T be a stopping time. T is integrable and E XT 6

E X0 if any one of the following hold

1. T is bounded.

2. X is bounded for every t and T is almost surely finite i.e. Pr{Tn → T as n → ∞} = 1.

3. E T is finite and there exists K such that

|Xs(ω)− Xt(ω)| 6 K for all s, t, ω

If in fact Xi is a martingale, then the equality holds.
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Example 18 Let Xn be a martingale with respect to a filtration Fn. The martingale is stopped when its value reaches
−a or b. Hence

T = min{n | Xn = −a or Xn = b}

Now, say p = Pr{XT = −a}.
Since Xn is a martingale, E Xt = 0. Hence by the optional stopping theorem E XT = 0. However, by the definition of
the random variable T this gives

0 = −ap + b(1− p) ⇒ p =
b

a + b

(20.1.5) Applications In Economics

Of the plethora of economic theories, only some are compatible with the maths covered thus far. It is clear,
for example, that the use of martingales will be relevant to theories proposing the current information about
securities∗ is reflected in its present market price.

Alternative ‘fundamentalist’ theories suggest that the value of a security is equal to “the value of the dis-
counted cashflow that security generates”. In this model, money is made by trading securities whose price
is different from its fundamental price, which an analyst can calculate.

Stock Pricing

At some time t let pt be the price of stock, dt be the dividends paid, Ft be “the information available”, and
r the the interest rate available on a safe investment†.

Say an investor wishes to invest an amount X0 at time zero. At time t the investment would be worth
(1 + r)tX0 if left safe in the bank. This should be taken account for in the calculations—this is the concept of
a discounted cashflow. In other situations it is common to discount for inflation.

Assume at present the time is t = 0. The value of an investment can be modelled as a random variable, and
its present worth can be found by discounting against the safe investment.

At a time t (even though at present the time is t = 0) the investment will be worth pt + dt. The value at t
should be the expected value of the investment at the next time, but discounted against the possibility of
making a safe investment instead. Hence

pt = (1 + r)−1 E (pt+1 + dt+1 | Ft)

Now let ht be the number of shares held, vt be the value of the fund at time t, and assume that dividends
are re-invested. Hence

vt = (1 + r)t ptht

Imagine now what happens at the next time, t + 1. At the start of the period ht shares are held. They are
worth pt+1 and pay a dividend of dt+1. Once the dividend is paid more shares are bought so that ht+1

shares are held. Hence
pt+1ht+1 = (pt+1 + dt+1)ht

At present (t = 0) interest lies in the value of the fund, which is really just a question of finding E vt.

∗The umbrella term ‘securities’ covers shares, options, bonds, etc. Each of these are defined in due course.
†r represents the return achievable from a safe investment such as a bank account. If the risky investment in shares

cannot do as well as a safe investment, then it is not a good investment.
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However,

E (vt+1 | Ft) = E
(

(1 + r)−t−1ht+1 pt+1 | Ft

)
= E

(
(1 + r)−t−1(pt+1 + dt+1)ht | Ft

)
= (1 + r)−tht

(
(1 + r)−1 E (pt+1 + dt+1 | Ft)

)
= (1 + r)−tht pt

= vt

Hence vt is a martingale. Note that the actual stock prices are not martingales, this will be shown in the next
section. From this point it is possible to find an expression for pt but this is a fundamentalist concept.

Valuation Of A Portfolio

A portfolio is simply a collection of shares and bonds. Bonds are safe investments. Since the superscript is
used to denote time, the subscript is now used to index, so let X1

t and X2
t be random variables (stochastic

processes) representing the price of a bond and of a stock, respectively. Let hi
t represent the number of stocks

and bonds held, so hi
t is Ft−1 measurable i.e. it is predictable. The value of the portfolio is simply

vt = h1
t X1

t + h2
t X2

t

Define now the gains process, which measures how much is made between consecutive times (considering
time as a discrete quantity).

Gt = vt+1 − vt = h1
t (X1

t+1 − X1
t ) + h2

t (X1
t+1 − X2

t ) so vt = v0 +
t

∑
j=0

Gj

Note the term Gi
t may be used to denote the gains for the investment i, and Xi

t+1 −Xi
t may be written ∆Xi

t+1.
∗

This is all very well, but how does the value of the portfolio compare to the value of a safe investment? This
consideration is incorporated into the model in the usual way—discounting. Say

Xi
t =

Xi
t

Nt

The normalising quantity Nt often represents the value of a safe investment, Nt = X0
t = (1 + r)tX0

0 say,
where X0 is the value of the safe investment. This now gives

vt = v0 +
n

∑
i=1

Gi

where Gi = Gi
Ni

.

Definition 19 Let a be a self financing portfolio and Vt(a) represent the value of a at time t. If V0(a) = 0 and Vt(a) > 0
and E VT(a) > 0 then a is called an arbitrage.

An arbitrage is a portfolio that makes something from nothing. It is required that a portfolio is not an
arbitrage, and furthermore that its value has a lower bound—there is a limit to indebtedness. It an be
shown the non existence of arbitrage is equivalent to the existence of an equivalent martingale measure.
This is a measure under which the normalised prices become martingales.
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Model For A Market

In modelling a market, consider the value of a contingent claim‡. Modelling this, a contingent claim is a
non-negative random variable F which is F measurable and represents the payment of £F(ω) at time T if ω

occurs. The claim can be sold at any time t 6 T and the question is its worth at any such time.

Consider for example F as a call option—the option to buy shares at the pre-determined price k. Let Xt be
the price of the shares at time t.

• If XT > k then the option has value k− XT and would be exercised.

• If XT < k then the option has value 0, and would not be exercised.

Hence F = max (0, XT − k), a random function of ω. The claim has two values—one to the buyer and one
to the seller.

For the seller let the value at t = 0 be Y. The equation

Y +
T

∑
i=0

θi∆Xi > F(ω)

must be satisfied. While the seller would like Y to be as large as possible, the minimum price acceptable is
the minimum value of Y for which this equation holds. The equation says the money received for the claim
plus the profit made by the seller’s portfolio must exceed the payment due in honouring the option when
exercised.

For the buyer the equation

−Y +
T

∑
i=0

θi∆Xi + F(ω) > 0

must be satisfied. Although the buyer clearly wants Y to be as small as possible, interest lies in the largest
value of Y that satisfies this equation. The equation says that whatever is paid for the option plus whatever
the buyer makes from his portfolio (a different one to the seller’s) plus the value of the option, must be
positive.

These two situations must be solved simultaneously if the claim can be sold. Assume no arbitrage and
assume completeness so that for any given F(ω) there exists θ such that

F(ω) = Y +
T

∑
i=0

θi∆Xi

The seller wishes to solve this for Y. Now, there exists a measure Q which makes Xi a martingale so for a
self financing process

Y +
T

∑
i=0

θi∆Xi =
F(ω)
X0

T

E
Q

(
Y +

T

∑
i=0

θi∆Xi

)
= E

Q

(
F(ω)
X0

T

)

Y = E
Q

(
F(ω)
X0

T

)
since Xi is a martingale

‡A contingent claim is an asset with random price that depends on the value of some other asset—the ‘underlying’.
These include options.
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So a value for Y can be found. To do this the measure Q has to be determined. Let X0
t the the value of a

bond and let the stock price move with increments

Rt =
Xt+1

Xt
=

a with probability p

b with probability 1− p

so the Rs are independently and identically distributed random variables. This is a binomial model for the
market. The value of p determines the measure Q and it is found to make the discounted price process a
martingale.

Xt =
Xt

X0
t

=
Xt

(1 + r)tX0
0

The value of p is found so that the martingale property holds, so

Xt−1 = E
Q

(
Xt | Ft−1

)
Xt−1

(1 + r)t−1X0
0

= E
Q

(
Xt−1Rt−1

(1 + r)tX0
0
| Ft−1

)
1 + r = E

Q
(Rt−1 | Ft−1)

= E
Q

Rt−1 since Rt−1 is not Ft−1 measurable

= ap + b(1− p)

p =
1 + r− b

a− b

This value of p defines Q, and hence an appropriate measure is found.

(20.1.6) Brownian Motion

Brownian motion is a familiar concept to physicists as it can be used to model diffusion. Brownian motion is
useful in mathematical finance as a way to add randomness to an otherwise smooth curve—the underlying
trend.

Definition 20 An m dimensional Brownian motion is a stochastic process Bt = (B1
t , B2

t , . . . , Bm
t ) taking values in Rm

such that

1. If t0 < t1 < · · · < tn then the random variables Bt0 , Bt1 − Bt0 , . . . , Btn − Btn−1 are independent.

2. Where s > t the increments are Gaussianly distributed, so that where A ⊂ Rm,

Pr{Bs+t − Bt ∈ A} =
∫

A

1√
2πt

e
−|x|2

2t dx

3. The paths are continuous with probability 1. i.e. the function mapping t to Bt is continuous.

The probability density function in this definition is very important. Note that in the definition t represents
time difference and x represents change in value. Therefore in the one dimensional case the following
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variations occur.

When B0 = 0 E ( f (Bt)) =
∫ ∞

−∞
f (z)

1√
2πt

e
−|z|2

2t dz

When B0 = x E
x

( f (Bt)) =
∫ ∞

−∞
f (z)

1√
2πt

e
−|x−z|2

2t dz

When B0 = 0 E ( f (Bt − Bs)) =
∫ ∞

−∞
f (z)

1√
2π(t− s)

e
−|z|2
2(t−s) dz

In particular it is worth noting that (Bt − Bs) + Bs has the same distribution as Bt−s + Bs, as this will be of
much use.

Stock Pricing

A common model for the price of a stock is

∆s
s

= rt + σ∆B giving st = s0 exp (at + σBt) where a = r− σ2

2
(21)

This can be shown to have expected value s0ert and to be a martingale under an appropriate measure. In
fact Brownian Motion itself is a martingale.

E (Bt | Fs) = E (Bt − Bs + Bs | Fs) t > s

= Bs + E (Bt − Bs | Fs)

= Bs +
∫ ∞

−∞

y√
2π(t− s)

exp
(

−y2

2(t− s)

)
dy

= Bs

Note that time is continuous, not discrete. The conditional expectations of Brownian Motions have a special
property. Fs provides no more information about Bt than Bs does. Hence E (Bt | Fs) = E (Bt | Bs).
Furthermore, because Bt−s is independent,

E
0

(Bt | Fs) = E
0

(Bt − Bs + Bs | Fs) = E
Bs

Bt−s

Also

E
0

( f (Bt) | Fs) = E
Bs

( f (Bt−s)) =
∫ ∞

−∞

f (y)√
2π(t− s)

exp
(
−(y− Bs)2

2(t− s)

)
dy

where Bs in the integrand is just a number.

Theorem 22 (Markov Property For Brownian Motion) Let Y be a bounded measurable function and let θs be the shift
operator. Then E (Y ◦ θs | Fs) = E

Bs
Y.

This means at any particular time s the Brownian Motion after s is dependent only on the value Bs. Brownian
Motions “forget their past”. This theorem has uses in finding things such as E (ss+t | Fs).

Further to the Markov Property, Brownian Motion also has the Strong Markov Property. This simply means
the above holds when s is a random time i.e. determined by a random variable—as stopping time.
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(20.2) Itô Calculus

How far has a particle undergoing Brownian Motion travelled? This is an obvious question, and its solution
is clearly an integral of some form.

(20.2.1) Itô Integration

Consider a partition of the time interval [a, b], say a = t0 < t1 < · · · < tn = b. Now if f (t, ω) is a function
it would be usual to approximate the ‘area under it’ with a Riemann sum with summands f (ti, ω)(ti+1 − ti)
but this does not work as there are many values ω could take. Instead take

∫ t

0
f (t, ω) dBt

def= lim
n→∞

n−1

∑
i=0

f (ti, ω)(Bti+1 − Bti )

This is not convergent for any fixed ω, and the sum is only convergent when

E
(∣∣ f (ti, ω)(Bti+1 − Bti )− I

∣∣2)→ 0 as n → ∞

Since in f , ω represents dependence on Brownian Motion, the concept of the composite map t → Bt → f
justifies the presence of the term (Bti+1 − Bti ).

The Itô integral has the following important properties

1. linearity

2. E
(∫ b

a f dBt

)
= 0

3. E

((∫ b
a f dBt

)2
)

= E
(∫ n

a f 2 dBt
)

this is called the Itô isometry.

4. Mt =
∫ a

0 f dBs is a martingale whenever f is bounded.

Itô Processes

Definition 23 An Itô process is a stochastic process Xt of the form

Xt = X0 +
∫ t

0
u(s, ω) ds +

∫ t

0
v(s, ω) dBs

where u and v have the properties
∫ t

0 u ds and
∫ t

0 v2 ds are finite. The process may be written in differential form,

dXt = u dt + v dBt

The function u is the drift of the stochastic process, and v is the diffusion. These give an underlying trend
with randomness added. It can be shown that an Itô process is a martingale only if its drift is zero.

Recall the value of a stock in a portfolio may be expressed in discrete time as

vt =
t

∑
i=1

θt(Xi+1 − Xi)

As increments of time between 0 and t decreases in size, this approaches the continuous case for which it is
evident that

vt =
t

∑
i=1

θt(Xi+1 − Xi) →
∫ t

0
θt dXt
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The Itô Formula

Calculating an Itô integral is quite different from calculating a normal integral. Take for example the case
f (t, ω) = Bt. Then

∫ t

0
Bt dBt = lim

n→∞

n−1

∑
i=1

Bti

(
Bti+1 − Bti

)
= lim

n→∞

n−1

∑
i=1

1
2

(
B2

ti+1
− B2

ti

)
− 1

2
(

Bti+1 − Bti

)2

= lim
n→∞

(
1
2

(
B2

tn−1+1
− B2

t0

)
−

n−1

∑
i=1

(
Bti+1 − Bti

)2
)

Now, the remaining sum is convergent to t. Also, B0 = 0 and tn = t hence

=
1
2

B2
t −

1
2

t

So B2
t = t + 2

∫ t

0
Bt dBt

This re-arrangement shows that B2
t is an Itô process with drift 1 and diffusion 2Bt. However, Bt is itself an

Itô process (it is a Brownian motion and so is a martingale) which has drift 0 and diffusion 1. Hence seek a
way to find Itô processes from non-linear transformations of Itô diffusions—in the above case Bt 7→ B2

t .

Theorem 24 (The Itô Formula) Let f (t, x) be continuously differentiable in t and continuously twice differentiable in
x i.e. f (t, x) ∈ C(1,2) and let X be an Itô process. Define the new stochastic process Yt = f (t, Xt), then Yt is the Itô
process

Yt = Y0 +
∫ t

0

∂ f
∂t

+
1
2

v2 ∂2 f
∂x2 + u

∂ f
∂x

dt +
∫ t

0

∂ f
∂x

dBt

or more generally

dy =
∂y
∂t

dt +
n

∑
i=1

∂y
∂xi

dxi +
1
2

n

∑
i=1

n

∑
j=1

∂2y
∂xi∂xj

dxi dxj

It is often preferable to work with the differential form where the identities

dt dt = dt dBt = 0 dBt dBt = dt dxi dxj = 0 when i 6= j

may be used.

Example 25 Define the Itô process Mt = eat+bBt . Find conditions on a and b such that Mt is a martingale.

Proof. Solution Consider the function f (t, x) = eat+bx which is in C(1,2). Set x = Bt which is an Itô process
with drift 0 and diffusion 1. Hence in the Itô formula,

Mt =
(

a +
b
2

) ∫ t

0
eat+bBt dt + b

∫ t

0
Bt dt

Now, an Itô process is a martingale when it has no drift, so for Mt to be a martingale, a = −b2

2 . �

The Itô formula can be extended into multiple dimensions. So when Yt = f (t, X1
t , X2

t , . . . , Xm
t )

dYt =
∂ f
∂t

dt +
m

∑
i=1

∂ f
∂xi

dXi
t +

1
2

m

∑
i=1

m

∑
j=1

∂2 f
∂xi∂yj

dXi
t dX j

t

where dXi
t dX j

t = 0 whenever i 6= j.
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(20.2.2) Stochastic Differential Equations

Definition 26 A stochastic differential equation is an equation of the form

Xt = X0 +
∫ t

0
v(t, ω) dt +

∫ t

0
u(t, ω) dBt

One such equation is a model for the price of an asset,

dSt = µSt dt + σSt dBt (27)

i.e. St − S0 =
∫ t

0
µSt dt +

∫ t

0
σSt dBt

Dividing through the differential form by St the left would integrate to ln St in normal calculus. Consider
therefore the function f (t, x) = ln x. Put x = St and use the Itô formula

d f =
∂ f
∂t

dt +
∂ f
∂x

dx +
1
2

∂2 f
∂x2 ( dx)2

=
1
St

dx +
−1
2S2

t
( dx)2

=
1
St

(µSt dt + σSt dBt) +
−1
2S2

t
(µSt dt + σSt dBt)2

=
1
St

(µSt dt + σSt dBt) +
−1
2S2

t
σ2S2

t dt

=
(

µ− σ2

2

)
dt + σ dBt

ln St − ln S0 =
(

µ− σ2

2

) ∫ t

0
dt + σ

∫ t

0
dBt

=
(

µ− σ2

2

)
t + σBt

St = S0 exp
((

µ− σ2

2

)
t + σBt

)
This is equation (21).

Generator Of A Diffusion

Associated with each Itô process is a second order linear partial differential operator A. This is defined as

A f (x) def= lim
t→∞

E f (Xt)− f (x)
t

This is clearly quite useless so alternatives are sought. Let Xt be an Itô process in m dimensions with initial
value x.

Theorem 28 Let u be an n dimensional vector, Bt be an m dimensional Brownian Motion. If

Xt = x +
∫ t

0
b(s, ω) dt +

∫ t

0
œ(s, ω) dBs(ω)

then

A =
n

∑
i=1

bi
∂

∂xi
+

1
2

n

∑
i=1

n

∑
j=1

(œœT)ij
∂2

∂xi∂xj
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The duality between Itô processes and partial differential equations allows differential equations to be
solved by taking expectation over a stochastic process.

Example 29 Find the solution to the diffusion equation as the expected value of a stochastic process, given the Cauchy
boundary conditions u(0, x) = g(x).

Proof. Solution The solution to the given equation is known to be

u(x, t) =
∫ ∞

−∞

1√
2πt

exp
(
−(x− y)2

2t

)
g(y) dy

Already the integrand seems familiar as the probability density function of some kind of Brownian motion.
By inspection this is clearly equal to

E
x

(g(Bt))

Let B′t be the same Brownian motion but starting at 0. Then

Bt = x + B′t so B′t = Bt − B0 =
∫ t

0
0 dt +

∫ t

0
dB′t

Hence B′t is an Itô process with drift 0 and diffusion 1. The generator for this is

A =
1
2

∂2

∂x2 �

The situation may be approached from a different angle. Consider a stochastic process given by the function
f (T − t, Bt). Applying the Itô formula,

f (T − t, Bt) = f (T, B0) +
∫ T

0
− ∂ f

∂t
+

1
2

∂2 f
∂x2 dt +

∫ T

0

∂ f
∂x

dBt

The drift vanishes when
∂ f
∂t

=
1
2

∂2 f
∂x2

So when f obeys the diffusion equation, replacing x with Bt gives an Itô diffusion. With Cauchy boundary
conditions this gives

g(x) = f (T, B0) +
∫ T

0

∂ f
∂x

dBt

Now take expectation. The integral represents a martingale so has expected value 0. Put B0 = x which not
random—hence the expectation can be dropped. Since B0 = x the expectation is taken beginning at x. T is
replaced by t.

E
x

g(Bt) = E f (T, B0) = f (t, x)

f (t, x) = E
x

g(Bt) =
∫ ∞

−∞

1√
2πt

exp
(
−(x− y)2

2t

)
dy

This is precisely the same result as Example 29. This is an example of a more general result.

Theorem 30 (Feynman-Kac) Suppose f ∈ C2(Rn) and c is continuously differentiable. Let Xt be a Itô process with
generator A. The the solution to the partial differential equation

∂u
∂x

= Au + cu
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where u(0, x) = f (x) is

u(t, x) = E
x

(
exp

(∫ t

0
c(Xs) ds

)
f (Xt)

)

This is an easy way to solve partial differential equations provided, of course, a suitable Itô process can be
found (although one always exists). For example, the differential equation

∂u
∂t

= b
∂u
∂x

+
1
2

∂2u
∂x2 + cu

clearly has generator and associated stochastic process

A = b
∂

∂x
+

1
2

∂2

∂x2 ⇔ Xt = X0 +
∫ t

0
b dt +

∫ t

0
dBt

By Feynman-Kac the solution is

u(t, x) = E
x

(
g(Xt) exp

(∫ t

0
c dt

))

Now, assume b and c are constant, so Xt = x + bt + Bt where now Bt starts at 0. Using this,

= E
(

g(x + bt + Bt)ect)
=
∫ ∞

−∞

1√
2πt

e
−y2

t g(x + bt + y)ect dy now put z = x + bt + y

=
∫ ∞

−∞

g(y)ect
√

2πt
exp

(
−(z− x− bt)2

2t

)
dz

Martingale Properties

It is very convenient to work with stochastic processes that are martingales. But, for example, an Itô process
is only a martingale when it has no drift. The situation can be remedied by changing probability measure.

Definition 31 Let P and Q be probability measures defined on a σ algebra F . P and Q are equivalent—written
P ∼ Q—if for all A ∈ F P(A) = 0 ⇔ Q(A) = 0.

Consider a Brownian motion: it is expected to fluctuate about some central position and not to drift. In
order to make an Itô process into a martingale the paths which drift must be given low probability and the
paths which do not must be given high probability, all under an equivalent measure.

The process Bt = bt + Bt is a Brownian motion with drift. Its probability density function is deduced as
follows.

Pr B < x = Pr bt + Bt < x = Pr Bt < x− bt

=
∫ x−bt

−∞

1√
2πt

exp
(
−y2

2t

)
dy

=
∫ x

−∞

1√
2πt

exp
(
−(z− bt)2

2t

)
dz
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So the probability density function is this last integrand. Finding now the expected value for a probability
measure P,

E
P

Bt =
∫ ∞

−∞

x√
2πt

exp
(
−(x− bt)2

2t

)
dx = bt

E
P

B2
t =

∫ ∞

−∞

x2
√

2πt
exp

(
−(x− bt)2

2t

)
dx = t + (bt)2

Clearly Bt is not a martingale under P. For Bt to be a martingale a measure Q must be found such that

E
Q

Bt =
∫ ∞

−∞

x√
2πt

exp
(
−(x− bt)2

2t

)
dx = 0

With a little thought it is clear this can be achieved by using the equivalent probability measure which has

dQ
dP

= exp
(
−y2

2t

)
exp

(
(y− bt)2

2t

)
= exp

(
1
2

b2t− by
)

This factor has the effect of changing the pdf for Bt to that of Bt. The notation of differential fractions is used
since

E
Q

f (Bt) =
∫

Ω
f (y) dQ =

∫
Ω

f (y)
dQ
dP

dP = E
P

(
f (Bt)

dQ
dP

)
It should be noted that dQ

dP is not a ‘proper’ derivative, indeed it is often denoted ξ.

Theorem 32 (Girsanov) Let ` = (θ1, θ2, . . . , θn) be a vector of square integrable stochastic processes, and Bt be a
Brownian motion under probability measure P. Then

ξθ
t = exp

(
−
∫ t

0
θs dBs −

1
2

∫ t

0
θ2

s ds
)

then this is a martingale under P. Define the equivalent measure Qθ by

dQθ

dP
= ξθ

t

then the process

Bθ
t = Bt +

∫ t

0
θs ds

is a standard Brownian motion and is a martingale under Qθ .

Theorem 33 Let X be the Itô process

Xt = x +
∫ t

0
µs ds +

∫ t

0
σs dBs

and let ν be an integrable process and θ be be a square integrable process such that σtθt = µt − νt. If ξθ is a martingale
under P then

Xt = x +
∫ t

0
νs ds +

∫ t

0
σs dBθ

s

where Bθ
t is a standard Brownian motion under Qθ and is given by

Bθ
t = Bt +

∫ t

0
θs ds

This theorem allows the drift of a stochastic process to be changed, and in particular for drift to be elimi-
nated. To eliminate drift σθ = µ, so if no solution for θ can be found then the drift cannot be eliminated.
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(20.3) Applications In Finance

Definition 34 A market is an Fn+1
t adapted n + 1 dimensional Itô process with

dX0 = r(t, ω)X0 dt (a bond)

dXi(t) = µi(t, ω) dt +
m

∑
j=0

σij(t, ω) dBj(t)

(20.3.1) Black-Scholes Economic Model

In the Black-Scholes economy µ, σ, and r are constant.

Definition 35 A portfolio is a collection of assets, say

`(t) = (θ1(t), θ2(t), . . . , θn(t))

the present value of which is

vt =
n

∑
i=1

θi(t)Xi(t) (36)

Separately to this, a portfolio is said to be self financing if no external finds are contributed or taken out of
the portfolio. The value of the portfolio is therefore equal to the initial value plus the sum of the gains, i.e.

vt = v0 +
∫ t

0

n

∑
i=1

θi(t) dXi(t)

dvt =
n

∑
i=1

θi(t) dXi(t) (37)

For equation (36) use Itô’s formula, taking both θ and X to be stochastic processes. Hence

dvt =
n

∑
i=1

θi(t) dXi(t) +
n

∑
i=1

Xi(t) dθi(t) +
1
2

n

∑
i=1

n

∑
j=1

0

Hence using equation (37) it is evident that for a self financing portfolio

n

∑
i=1

Xi(t) dθi(t) = 0

This is quite obvious really, as it expresses the inability to change the amounts of securities held indepen-
dently of eachother i.e. by external influence. The next step in the process is to discount against a safe
investment with price process X0(t), observe that X0(t) = 1.

Lemma 38 The discounted price process of a normalised portfolio is given by

vt =
n

∑
i=0

θi(t)Xi(t)

Proof. First of all, use Itô’s formula on Xi(t) = Xi(t)
X0t to give

dX0 = r dt

dXi(t) =
1

X0(t)
dXi(t)−

Xi(t)
(X0(t))2
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(This is easily seen by working through the example dX0 = r dt with f (X0, X1) = X1
X0

.) In the Black-Scholes
model

dX0 = µ0 dt

dXi = µi dt + ∑
j

σij dBj(t)

which gives rise to the appropriate cancellations. Now doing the same for vt = vt
X0t gives

dvi =
1

x0(t)
dvt −

vt

(X0(t))2 dX0(t)

=
n

∑
i=0

1
x0(t)

θi(t) dXi(t)−
1

(X0(t))2 dX0(t)
n

∑
i=0

θi(t)Xi(t)

=
n

∑
i=1

θi(t) dXi(t) �

An appropriate model for a portfolio has now been constructed. However, in order to progress towards
option pricing a few assumptions about the market environment must be made.

Arbitrage

Roughly speaking, arbitrage is the opportunity to make money from nothing and to do so without risk. In
such a case investors would try to create arbitrage portfolios, creating high demand for certain assets. This
would cause disequilibrium in the market as demand would be much more than subtle.

Definition 39 A self financing portfolio with value vt is an arbitrage if v0 = 0 and E vt > 0.

Theorem 40 Suppose there exists a probability measure Q that is Fn+1
t measurable and such that P ∼ Q. If

{vi(t)}t∈[0,T] is a martingale under Q then there is no arbitrage.

The point to remember from this theorem is that there is no arbitrage if and only if an equivalent martingale
measure exists.

In the Black-Scholes economic model

dX0 = rX0 dt

dX1 = µX1 dt + σX1 dBt

which solve to give

X0(t) = X0(0)ert

X1(t) = X1(0) exp
((

µ− σ2

2

)
t + σBt

)
Let P be a probability measure under which Bt is a Brownian motion and assume r, µ, and σ are constants.
Calculating E X1(t) shows X1(t) to be a martingale only if µ = 0. Normalising, X1(t) is only a martingale if
µ = r. Now,

dX1(t) = (µ− r)X1(t) dt + σX1(t) dBt

is the normalised price process, and so a change of drift of (µ − r)X1(t) is required. Using Theorem 33
σtX1(t)θt = −(µ− r)X1(t) so

θt =
(µ− r)

σ
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and hence

ξθ
t = exp

(
−
∫ t

0

(µ− r)
σ

dBs −
1
2

∫ t

0

(µ− r)2

σ2 ds
)

= exp
(
−(µ− r)

σ
Bt −

(µ− r)2

2σ2t

)
Having made this change of drift the new Xt can be found as follows. First of all note that

B̃t = Bt +
∫ t

0

µ− r
σ

ds = Bt +
µ− r

σ
t

and hence
dBt = dB̃t −

µ− r
σ

dt

Substituting this into the equation for dX1 gives

dX1 = (µ− r)X1(t) dt + σX1(t) dBt

= (µ− r)X1(t) dt + σX1(t)
(

dB̃t −
µ− r

σ
dt
)

= σX1(t) dB̃t

Solving this is similar to the process used for equation (27) and gives

Xt = X1(0) exp
(

σ2

2
t + σB̃t

)
Now finding the expected value

E X1(t) = E

(
X1(0) exp

(
σ2

2
t + σB̃t

))

= X1(t) exp
(
−σ2

2
t
) ∫ ∞

−∞

exp −y2

2t√
2πt

exp (σy) dy

= X1(t) exp
(
−σ2

2
t
)

exp

 σ2

4
(

1
2t

)


= X1(0)

So Xt is a martingale under Q. Hence by Theorem 40 there is no arbitrage in the Black-Scholes economy.

Using Theorem 33 for multiple assets, σ is a matrix and θ is a vector. The result means that if σ is singular
(or if not square then the solutions are inconsistent) then an arbitrage can be constructed. Take for example

dX0 = 0

dX1 = 3 dt + dB1(t)

dX2 = dt + 2 dB1(t) + 3 dB2(t)

dX3 = dt + 3 dB2(t)



20.3. APPLICATIONS IN FINANCE 21

This economy gives rise to the system of equations1 0
2 3
0 3

 ` =
(

3 1 1
)

Clearly this has no solution and so an arbitrage can be constructed. This is done by combining assets in
such a way that the random components are eliminated. In this case the portfolio will have holdings vector
` = (θ0, 2,−1, 1)T .

More generally σ will be dependent on the actual price process, e.g. dX1 = dt + X2 dB1(t). In this case the
portfolio is itself a stochastic process. Consider the following example.

Example 41 Construct an arbitrage in the market

dX0 = 0

dX1 = 2 dt + X1(t) dB1(t) + X1(t) dB2(t)

dX2 = − dt− X2(t) dB1(t)− X2(t) dB2(t)

Proof. Solution The system of equations produced is(
X1 X1

−X2 −X2

)
` =

(
2 −1

)
The matrix is clearly singular and it would seem obvious to construct the portfolio ` = (θ0, X2,−X1)T .
However, from Itô’s formula it is evident that including a term with the product X1(t)X2(t) will give rise to
other terms. Consider therefore f (x, y) = xy with x = X1(t) and y = X2(t) then by Itô’s formula

d f = X2(t) dX1(t) + X1(t) dX2(t) +
1
2

dX1(t) dX2(t)

= X2(t) dX1(t) + X1(t) dX2(t) +
1
2

(2 dt + X1(t) dB1(t) + X1(t) dB2(t)) (− dt− X2(t) dB1(t)− X2(t) dB2(t))

= X2(t) dX1(t) + X1(t) dX2(t)− X1(t)X2(t) dt

= X2(t) (2 dt + X1(t) dB1(t) + X1(t) dB2(t)) + X1(t) (− dt− X2(t) dB1(t)− X2(t) dB2(t))− X1(t)X2(t) dt

= (−X1(t) + 2X2(t)− X1(t)X2(t)) dt

Therefore the portfolio ` = (θ0, X2, X1)T has value process

dvt = (X1 + X2 − 2X2X2) dt �

Completeness

Definition 42 A market is complete if for all bounded FT measurable functions F(ω), there exists a self financing
portfolio z such that for all A ∈ R

F(ω) = A +
∫ T

0
z(t) · dX(t)

Completeness really means that a portfolio can be constructed to attain any given value at any given time.
Moreover, a market is complete if and only if there exists a unique equivalent martingale measure.
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Theorem 43 Let u be an m dimensional stochastic process on a time interval [0, T] for which

σu = µ− rx and E

(
exp

(
1
2

∫ T

0
u2(s, ω) ds

))
< ∞

then the market X is complete if and only if there exists an Ft adapted matrix process Λ(t, ω) such that Λσ = I.

Clearly this means that σ must be of full rank, which can provide a quick check for non-completeness.

(20.3.2) Pricing European Options

Definition 44 A European option is an Ft measurable random function.

• A call option allows the holder to buy shares at a prescribed price K at a prescribed time T.

• A put option allows the holder to sell shares at a prescribed price K at a prescribed time T.

From this it is immediately obvious that

• For the call option the payoff is the greatest of 0 (when the share price does not exceed K i.e. F(ω) < K)
and F(ω)− K.

• For the put option the payoff is the greatest of 0 (when F(ω) < K) and K − F(ω).

How much should one pay to buy such an option?

Option Pricing

From the buyer’s point of view, an initial payment of y must be made, and a payoff of F(ω) is received at
time T. In the interim time the buyer can trade his portfolio z and so

vb(t) = −y + F(ω) +
∫ T

0
z(s) dX(s)

and this must be positive. Clearly the buyer wishes the price of the option to be as low as possible. However,
interest lies in the largest price that will allow the buyer to break even. Hence define

pb = sup

{
y | ∃z | −y +

n

∑
i=1

∫ T

0
zi(t) dXi(t) > −F(ω)

}

A more clear way to think about this is

pb = sup

{
y | ∃z | y 6

n

∑
i=1

∫ T

0
zi(t) dXi(t) + F(ω)

}

For the seller, a sum of Y is received for the option, which he can invest in a portfolio Z. At time T the seller
has liability F(ω), and even though the buyer may not exercise the option the seller must not assume this.
Hence

vs = y− F(ω) +
n

∑
i=1

∫ T

0
Zi(t) dXi(t)

Clearly this must be a positive amount. The seller would like the price of the option to be as high as possible,
but interest lies in the lowest value such that he does not make a loss. Hence define

ps = inf

{
Y | ∃Z | Y +

n

∑
i=1

∫ T

0
Zi(t) dXi(t) > F(ω)

}
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Generally pb 6 ps and clearly a sale can only be made if these prices coincide at value p, say, at t = 0. For
normalised price processes let ξt = 1

X0(t) the results become

pb = sup

{
y | ∃z | y 6

n

∑
i=1

∫ T

0
zi(t) dXi(t) + ξT F(ω)

}
(45)

ps = inf

{
Y | ∃Z | Y +

n

∑
i=1

∫ T

0
Zi(t) dXi(t) > ξT F(ω)

}
(46)

Theorem 47 Suppose a measure Q can be defined such that

dQ
dP

= exp
(
−
∫ T

0
u(t, ω) dB(t)− 1

2

∫ T

0
(u(t, ω))2 dt

)
where σu = ¯− rX and u satisfies the Novikov§ condition then

pb 6 E Q (ξT F(ω)) 6 ps

Furthermore, if the market is complete, then these inequalities become equality.

Proof. Using Girsanov’s theorem (Theorem 32) under the probability measure Q the price processes become

dX0 = 0

dXi = ξtσi(t) dB̃(t) for i 6 i 6 n

where B̃(t) is a standard Brownian motion under Q. Hence for the buyer

E
Q

(
n

∑
i=1

∫ T

0
zi(t) dXi(t)

)
= 0

since this is a martingale under Q. Hence from equation (45),

pb = y 6 E
Q

(ξT F(ω))

For the seller the gains process of the portfolio are also a martingale and hence from equation (46)

Y = ps > E
Q

(ξT F(ω))

Hence the first part of the theorem.

Now, under completeness it is possible to construct a portfolio for the buyer such that

−y +
n

∑
i=1

∫ T

0
zi dXi = −ξT F(ω)

Similarly a portfolio for the seller can be constructed such that

Y +
n

∑
i=1

∫ T

0
Zi dXi = ξT F(ω)

§The Novikov condition on u is that E
(

exp
(

1
2

∫ T
0 (u(t, ω))2 dt

))
< ∞.
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Hence taking expectation under the measure Q it is evident that

pb = E
Q

(ξT F(ω)) = ps (48)
�

Pricing At Some Intermediate Time

Using a similar method the value of the option at some time 0 < t < T can be found. Note in the above
proof it is assumed that ξ0 = 1 and so is ineffective when acting on y or Y. Now, at some time t for the buyer

−ξty +
n

∑
i=1

∫ T

t
zi(s) dXi(s) + ξT F(ω) > 0 (49)

Since the gains process is a martingale under Q, at time t no information is available about the future. Hence
taking expectation given Ft gives

E
Q

(∫ T

t
zi(s) dXi(s) | Ft

)
=
∫ t

t
zi(s) dXi(s) = 0

Therefore taking expectation under Q of equation (49) gives

E
Q

(ξty | Ft) 6 E
Q

(ξT F(ω) | Ft)

pb(t) = y 6 (ξt)−1
E
Q

(ξT F(ω) | Ft)

Similarly for the seller

ξtY +
n

∑
i=1

∫ T

t
Zi(s) dXi(s)− ξT F(ω) > 0

Again the conditional expectation under Q of the gains process is zero, and so

ps(t) = Y > (ξt)−1
E
Q

(ξT F(ω) | Ft)

Under completeness portfolios for the buyer and seller can be constructed such as to allow equality and
hence a mutually acceptable price can again be found. Putting t = 0 it is fairly clear these equations are
consistent with those of Theorem 47.

Connection With Partial Differential Equations

Consider equation (48) in the context of the simple Black-Scholes economy

dX0(t) = rX0(t) dt

dX1(t) = µX1(t) dt + σX1(t) dBt

Applying Girsanov’s theorem (Theorem 32) produces the equivalent probability measure

dQ
dP

= exp
(
−(µ− r)

σ
Bt −

(µ− r)2

2σ2 t
)

So that B̃t = µ−r
σ t + Bt is a Brownian motion under Q. Normalising and integrating gives

X1(t) = X1(0) exp
(
−σ2

2
t + σB̃t

)
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In equation (48) the function F(ω) represents the payoff of the option, and hence

F(ω) = F(X1(T)) = F(t, BT) =

max (X1(T)− k, 0) for a call

max (k− X1(T), 0) for a put

Now using the equation for the option price at time 0 6 t 6 T,

p = (ξ(t))−1
E
Q

(
ξ(T)F(t, B̃T) | Ft

)
= (ξ(t))−1 ξ(T) E

Q

(
F(t, B̃T) | Ft

)
Now use the Markov property, so E (Y ◦ θt | Ft) = EBt Y.

= e−r(T−t) EB̃t
Q

F(t, B̃T−t)

= e−rt EB̃t
Q

F(t, B̃t) by changing variables

Changing back from the Brownian motion to the stock price, let

u(t, X1(t)) = e−rt EB̃t
Q

F(t, X1(t)) (50)

By Feynman-Kac (Theorem 30) u is the solution to the partial differential equation

∂u
∂t

= Au + cu

where A is the generator of the Itô diffusion that is X1(t), so putting X1(t) = x1 gives

A = µx1
∂

∂x1
+

σ2x2
1

2
∂2

∂x2
1

and c(s) = −rs. Hence
∂u
∂t

= µx1
∂u
∂x1

+
σ2x2

1
2

∂2u
∂x2

1
− ru

Clearly the variable t can be changed back to t to give

0 =
∂u
∂t

+ µx1
∂u
∂x1

+
σ2x2

1
2

∂2u
∂x2

1
− ru (51)

Here u gives the value of the option at time t when the underlying has value x1. This is the Black-Scholes
partial differential equation.

The objective now is to construct the portfolio z or Z mentioned in Section 20.3.2. In this simple case the
portfolio will be simply X0(t) + ∆(t)X1(t) where ∆(t) is the quantity to be determined.

Theorem 52 ∆ =
∂u
∂x1

.

Proof. Assuming completeness,

ξ(t)y =
∫ T

t
∆(t) dX1(t) + ξ(T)F(ω)

Now y = u(T− t, X1(t)) and so applying Itô’s formula on ξ(t)y = e−rtu(T− t, X1(t)) (using the product rule)
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gives

d(ξ(t)y) =

(
∂u
∂t

dt +
∂u
∂x1

dx1 +
1
2

∂2u
∂x2

1
( dx1)2 − ru dt

)
e−rt

But dx1 = µx1 dt + σx1 dB̃t and so

=

(
∂u
∂t

dt + µx1
∂u
∂x1

dt + σx1
∂u
∂x1

dB̃t +
σ2x2

1
2

∂2u
∂x2

1
dt− ru dt

)
e−rt

= e−rtσx1
∂u
∂x1

dB̃t from equation (51)

= ξ(t)σx1
∂u
∂x1

dB̃t

ξ(t)y = ξ(T)F(ω) +
∫ T

t
ξ(t)

∂u
∂x1

σX1(t) dB̃t �

(20.3.3) Pricing American Options

Option Pricing

Unlike European options, American options have no expiry time. The exercise time for an option is therefore
a stopping time t(ω). Hence

F(ω) =

max (X1(t(ω))− k, 0) for a call

max (k− X1(t(ω)), 0) for a put

The cases for the buyer and seller can be considered in a similar way to the European option, but the option
price is now dependent on ω.

For the buyer

pb = sup

{
y | ∃z ∃t(ω) | y 6 F(ω) +

n

∑
i=1

∫ t(ω)

0
zi dXi(t)

}
for fixed t(ω)

Now use Girsanov’s theorem to find a probability measure Q such that Xi are martingales. Taking expecta-
tion gives

y 6 E
Q

(ξ(t(ω))F(ω)) ∀y

and hence letting t(ω) vary,
pb 6 sup

t(ω)
E
Q

(ξ(t(ω))F(ω)) (53)

For the seller

ps = inf

{
Y | ∃Z ∃t(ω) | Y > F(ω)−

n

∑
i=1

∫ t(ω)

0
Zi dXi(t)

}
for fixed t(ω)

Using the discounted portfolio and taking expected values under Q,

Y > E
Q

(ξ(t(ω))F(ω)) ∀Y
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and so letting t(ω) vary, all possibilities must be covered and so

ps > sup
t(ω)

E
Q

(ξ(t(ω))F(ω)) (54)

Hence assuming completeness, equations (53) and (54) give

pb = E
Q

(ξ(t(ω))F(ω)) = ps (55)

It follows that at any time t the option has price

p(t) = sup
τ>t

(ξ(t))−1
E
Q

(ξ(τ)F(τ) | Ft)

Optimal Stopping

When to exercise an American option is of course just as big a problem as what to pay for one. The problem
is to find when to stop the process so as to maximise the reward, but to do so without knowledge of the
future of the process. This has many applications.

Definition 56 Let {Xt} be a finite sequence of random variables. The Snell envelope of this process is the stochastic
process Zt defined as

ZT = XT

Zt−1 = max (Xt−1, E (Zt | Ft−1))

Theorem 57 The Snell envelope is a supermartingale that dominates {Xt} for all t. Moreover, where

τ = min{t | Zt = Xt}

then the stopped process Zt∧τ is a martingale and τ is the optimal stopping time.

Definition 58 Let f be a measurable function. f is called supermeanvalued with respect to the Itô process Xt if for all
stopping times τ

f (x) > E
x

f (Xτ)

Furthermore, if f is lower semicontinuous then it is called superharmonic.

Lemma 59 f is superharmonic if and only if A f 6 0 where A is the generator of Xt.

Definition 60 Let h be a measurable function. The function f is a supermeanvalued majorant of h if

1. f is supermeanvalued.

2. f 6 h.

Furthermore,

• h = inf f { f (x)} is the least supermeanvalued majorant of h.

• Similarly ĥ is the least superharmonic majorant of h.

Theorem 61 Let g be a continuous function representing the reward of some process. Where g∗ is the optimal reward,
g∗ = ĝ.
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ĝ, the least superharmonic majorant of g can be constructed as the limit of a sequence of functions. Say

g0 = g and gn = sup
t

E
x

gn−1(Xt)

Consider the set D = {x | g(x) < ĝ(x)} then the first exit time of this set is of interest, τD say—this is an
optimal stopping time. Further, let U = {x | Ag > 0} where A is the generator of X. Then it is never
optimal to stop before the process has exited U. This is fairly intuitive, since Ag is some sort of a derivative
and so being positive g must still be ‘increasing’.

European options give rise to partial differential equations, and similarly American options give rise to free
boundary problem partial differential equations.

To reiterate the optimal stopping problem, the task is to optimally stop a process of the form supt Ex g(Xt).
This may be stated as the task to find Φ and t 6 T (T is the first exit time from some domain V) such that

Φ(y) = sup
t6T

Jt(y) = Jt∗ (y)

Jt(y) = E
y

(∫ t

0
f (Yτ) dτ + g(Yt)

)
dYt = b(Yt) dt + σ(Yt) dBt

Theorem 62 Let Y be a stochastic process with generator

L =
n

∑
i=1

bi(y)
∂

∂yi
+

1
2

n

∑
i=1

m

∑
j=1

(σσT)ij
∂2

∂yi∂yj

then where φ is a function that satisfies the conditions

Lφ + f 6 0 y ∈ V \ D

Lφ + f = 0 y ∈ D

φ > g y ∈ V

φ = g y ∈ ∂V

where D = {x ∈ V | φ(x) > g(x)}

then φ(y) = Φ(y) and the optimal stopping time is

t∗ = tD = inf{t > 0 | yt /∈ D}

This being a free boundary value problem (D depends on φ) it is usually very difficult to solve. A further
condition may be given to ensure the solution is C1 on Rn.


