Chapter 24
MSMYAI Partial Differential Equations

(24.1) Analytical Techniques

(24.1.1) Common Equations & Equation Classi[dation

Definition | A partial differential equation is a relationship of the form

Ju J"u
f (XI u(X)/ aTci' B axilax,-z e Bxin > =0

where u is a vector of dependent variables and x is a vector of the independent variables. The order of the equation is

the order of the highest order derivative.

Definition 2 A partial differential equation is linear if the dependent variables and their derivatives appear only lin-

early.

Definition 3 A partial differential equation is quasi-linear if the derivatives of the dependent variables appear linearly.

Definition 4 A partial differential equation is homogeneous if u = 0 is a solution.

Some common differential equations and their classifications are listed in table 1.

Name Equation Classification
Laplace’s Equation Vi =0 Linear, homogeneous
2
The Wave Equation V2 = C%ZT;P Linear
o . 2, 0P .
The Diffusion Equation DV<¢p = m Linear
. op = op PP -
The KdV Equation 3 + (Pa + 353 = 0 | Quasi-linear, homogeneous

Table 1: Some common PDEs and their classifications

It is usual to solve PDEs over some kind of solution domain, which could be finite or infinite. If this domain

is D then it is usual to specify conditions on its boundary, oD.

o Dirichlet boundary conditions specify ¢(x) on aD.

e Neumann boundary conditions specify the gradient of the normal vector on 0D i.e. give the value of

g—ﬁ =V¢-nonadD.
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As well as boundary conditions, initial conditions may be specified where ¢ depends on time t.

The method of separation of variables has already been covered in Chapter ??. Other analytical methods for

solving PDEs are now discussed.

(24.1.2) D’Allembert’s Solution Of The | Dimensional Wave Equation

The one dimensional wave equation can be used to model vibrations in a string of finite or infinite length.
The problem is to solve

ody 19y

- 7 5

ox c2ot ®)
subject to the initial conditions y = yo(x) and % = vg(x) when t = 0.

Introduce the new variables ¢ = x — ct and y = x + ct then by the Chain rule
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This gives

Py [0 0 oy . oy
@—(F%)(F%)

_ Py Py Py
-~ ag2 Togoy - on?
0%y 0 0 oy = 9y
andﬁ = <7C%+C$> (7C87€+C%)
2 &%y 29y

82
297y oYy oy
32 + 2c 3Ean +c 8172

=C

Now substituting into (5) gives
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integrating wrt 7, g% = 7(@ )

¢
integrating wrtz, y = /C f(s) ds+ g(n)

= f(©)+ &)
= f(x —ct) + g(x +ct)

The functions f and g could in fact be any function. Consider the effect of the passage of time on the function
f. As t increases the graph of f shifts to the right (at speed c). Similarly g represents a wave travelling to the
left.

Using the initial conditions, ¥ = yo when ¢t = 0 gives

yo = f(x) + g(x) (6)
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Differentiating to use % = vp(x) gives

vo(x) = —cf'(x) + cg' (%)
—cf(x)+cg(x) = /ﬂx vp(s) ds 7)

Equations (6) and (7) are a pair of simultaneous equations for f and g. Solving these gives

F@) = 3000 5 [ o069 ds
86) = 5v0() + 5 [ vo(e) ds

The general solution to the 1 dimensional wave equation, equation (5), is therefore

1 1 1 X+ct q 8
¥ ) = Suol+et) + syl — e+ 5o [ on(s) ds ®)

This D’Allembert’s solution to the 1 dimensional wave equation.

(24.1.3) First Order Quasi-Linear Partial Differential Equations

A first order quasi-linear partial differential equation is of the form
ou Ju
a(u, x,y) 5 -+ b(u, x, y)@ = c(u, x,y) €)

where u = u(x, y). The solution can be considered as a surface in xyu space, say u = F(x,y). Let G(x,y, u) =
F(x,y) — u so that the normal to the solution surface can be calculated to be

JdG dG 9G oF oF ou Ju
vo- (5 ) = Goa )= Gra )
Now define a = (4, b, c) so that equation (9) can be written as a- VG = 0. Hence VG is perpendicular to a.

But VG is normal to the solution surface, therefore a must lie in the solution surface.

Define now some line, parameterised in terms of 7, say. So
(x(7),y(1),2(7)) 1is parallel toa

In order to be parallel, the conditions

dx dy du

ac =" ar -’ ar -
must hold. This defines a family of lines: as no initial point has been specified the line could be anywhere,
but where it is depends on a which is a function of xyu space. These lines are called characteristics, and the
next task is to ‘pin them down’ so that they define a surface—the solution surface.

The initial conditions are given values of u on some line in the xy plane. Define the corresponding line I" in

xyu space and parameterise it using s, say. So

I'(s) = (x(s), y(s), u(s))

Define T = 0 on I', together with the rest of the initial conditions. Subject to changing variables back from

and s to x, y, and u, the equation is now solved. For any point in xyu space, start on the line I', then follow
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a characteristic to the point required.
The projections of the characteristics onto the xy plane are called the characteristic base curves.

In actually using this method the three first order ordinary differential equations may be solved in a number
of ways. It is important to remember that the constant of integration can be any function of s. Finding this

function is usually quite easy, using the initial conditions

x=s5 u=uy 7=0 when y=0

When The Method Of Characteristics Fails

If the characteristic base curves do not cover the entire xy plane, there will be areas of xyu space that cannot
be reached, so the solution will not be complete. Often this is due to physical interpretations of the equation
being solved, for example that only real values of x, y, and u are allowed.

Definition 10 An envelope is a curve that bounds the characteristic base curves

Definition || If Vu is singular on an envelope then the envelope is called a caustic.

It can be shown that characteristic base curves end on a caustic. An envelope is just the boundary between
the area of the plane in which characteristic base curves lie, and the area in which they do not.

The solution can fail in other ways too. If the line on which the initial conditions are specified is parallel to
the characteristic base curves then it will not be possible to use the characteristics to ‘move off” the initial
line I'. Essentially, information cannot propagate to other parts of xyu space. This problem usually arises if
a mistake has been made translating a physical problem to the partial differential equation to be solved.

Another problem is if the characteristic base curves intersect the line of initial conditions at more than one
place. Even if the values at the intersection are consistent (which is unlikely) there is clearly a physical
nonsense about such a situation. In such situations the initial conditions (when y = 0) may be specified on
the half line x < 0 say.

Finally, the method may fail if characteristic base curves intersect eachother. This can happen when they are

piecewise defined on x for example if

s+x x <0
y(x) =
s x>0

in this case the diagonal lines from x < 0 will intersect the vertical lines in the region x > 0.

(24.1.4) Solution To Poisson’s Equation Using Green’s Functions

Poisson’s equation is V2u(r) = p(r) where p is a known function. The solution is sought in some region V

that has boundary S. The boundary condition is # = f(r) on S.

Now, where n is the unit normal vector to the bounding surface S of a volume V; and where ¢(r) and (r)

are functions, Green'’s second theorem gives

2.0 2 — — .
[ #9%—yv2pav = [ (¢Vp—yvg)-nds

As integrals are easier to solve that partial differential equations—they can at least be done numerically—

this is used to find an expression for u; the solution to Poisson’s equation.
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Consider a function G(r, ry) which is a Green’s function, so that V2G(r, ry) = &(r — rp) where ¢ is the Dirac

delta function. Furthermore, define G in such a way that G = 0 on S. Now using Green’s second theorem;

/ u(®)V2G(r, rp) — G(r, 10) V2u(r) dV = / ()aG(r /1)) e O)Bu(r) 45
J, wwste=r0) = Glemptoy v = | 27 as
(ro) — / G, 1o)p(r) AV = / f )aG(r 1) 4

As 1j can be chosen at will, this is a solution for Poisson’s equation. The problem remaining now is to find
the Green'’s function G.

Let G(r,ry) = F(r,19) + H(r) where V2F = 8(r—1g9), V2H = Oand F+ H = O on S. F is called the
fundamental solution.

F In Three Dimensions

The task is to solve V2F = §(r — rp). Notice this problem is spherically symmetric about the point ry, so

consider a sphere S’ with radius R and centre rj. Integrating over S,
/ V2E(r, 1) AV’ = / S(r—rg)dV' =1 sincery € V' (12)
4 4
Now using the divergence theorem

/ V2E(r, 1p) AV’ = / VE(r, 1) - n dS’
JV! S’

but by symmetry, F(r,rg) = F(r) where r = |r — rp|. Furthermore, n always points in the direction r — ry.
Now, since on S/, r = R this gives

dF 27T 7T 5 .
_{E] /0 /ORsmed4>d9

= 27TR? {dF} [— cos 6]
dr r=R

= 471R? {dp}
dr |,_r

Now using equation (12)

oF 1

o 4nr? onr=R
F= /4 dr+C
747T7’+C

Imposing the condition F — 0 as ¥ — co gives C = 0. Hence

-1

47t|r — 19| (13)

F(r,rp) =
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F In Two Dimensions

The task is again to solve V2F = §(r — rp). Integrating over some area A gives

/ V2E(r, 1) dA :/ S(r—rg) dA =1
A A

Since the problem has circular symmetry about ry let A be a circle centred at ry. Say the circle has boundary

B with outward pointing normal vector n then by the divergence theorem
/ V2F(r, 1) dA — / VF(r ) ndB =1
A B
Now let r = |r — rp|, then since r — r is parallel to n

1= / VF(r,rg) -ndB
B

dF(r)
s dr dr
dF(r)
dr

27
/ R?df by changing to polar co-ordinates
J0

r=R
dF(r)

=271tR Ep

r=R

dF 1
5_ﬁ onr =R

F:ilnr—l—c
27

:%ln|r—r0|—l—c

Note the constant does not necessarily vanish since F -+ 0as |r| — oo, though it may well do in certain

applications.

Finding The Green’s Function G

Both the 2 and 3 dimensional cases for F have been covered. What now remains is to find the function H
such that V2ZH =0and F+ H=0o0nS.

H can in fact be constructed from F. Simply let H = F(r,r;) where r; ¢ V, the solution region. This means
that V2ZH = 0in Vand F+ H =0on S.

A typical choice for 1y is the reflection of ry in the bounding line or surface of V.

Poisson’s Formula

When solving V?u = 0 in 2 dimensions on the upper half plane the above theory yields a relatively easy

result. Proceeding with the method of Green’s functions, since p = 0 the result reduces to

oG
u(o,y0) = [ F57 dS

In 2 dimensions 1
G(r, rg) = o Injr—ry|+C



24.1. ANALYTICAL TECHNIQUES 7

and V2G = §(r — rp). The task now is to modify G to make it zero on the bounding ‘surface’, the x axis. For

r1 in the lower half plane let

1 1
Gfﬁln|r—r0|—%ln|r—rl\—|—c

then by symmetry V2G = 6(r—1g) — 6(r — 1y) = (r — 19) since 1; not in the upper half plane, so this
condition still holds. Say rg = xi + yj so let r; = xi — yj. Hence

1 1
Glry0) = 5~ In\/(x = X0 + (7 = o) — o In\/(x = 02 + (y + y0)? + C

On the boundary y = 0, and substituting this in gives G = 0 <& C = 0. Let n be the outward pointing

normal vector to the boundary, son = —j. Hence
oG . 0dG
_ 11 2(y — yo) 11 2(y + o)
272 (x = x0)* + (Y —yo)* 27 2 (x — x0)* + (y + o)
9G - v + 1w
an |,_o 27 (x = x)* +y5 27 (x — 20 + Y5
Yo

7 ((x — x0)2 + y3)

The final result is Poisson’s formula for the upper half plane. The solution to V2u = 0 is given by
¥ / _ S
u(x,
»= (s—x)2+y?
Particular choices of f (in particular constants and zero) will allow this integral to be calculated quite easily.
It should be remembered that

1 1 X . +7
/ ——— dx = — arctan <7> and lim arctanx = —
x2 + a2 a a x—=+oco 2

(24.1.5) Conformal Mappings

Results from Complex Variable Theory (Chapter ??) are assumed. The idea of a conformal mapping is to
change co-ordinate systems in such a way that a partial differential equation becomes easier to solve. The

solution can then be transformed back to the original co-ordinate system.

Definition 14 A conformal mapping is a function f: C — C that preserves angles.

It can be shown that any analytic function is a conformal mapping provided its derivative is never zero.

It is common to treat R? as C and map to a different complex plane in which the area under consideration—
the area in which the partial differential equation must be solved—maps to the upper half plane. Once in
the new co-ordinate system boundary conditions must also be converted, allowing a solution to be found.

A number of common transformations are now presented for memorisation.

In each case a mapping z = x + iy to w = u + iv is sought.
1. Let D be the wedge 0 < argz < 7 for m >1 5 and consider the mapping w = z™.
Since z;z; has argument arg z; + argz, the half line Z is mapped to the negative u axis. The positive

x axis is clearly mapped to the positive u axis.
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Clearly D is mapped to the upper half plane with its boundaries mapping to the positive and negative

parts of the u axis.
2. Let D be the strip 0 < y < a and consider the mapping w = e« . Clearly the derivative is positive.

mz nx imy
a

= e%(’(""iy) —eaea

w=e

Ify = 0thenw = e € R" hence the lower boundary of the strip is mapped to the positive u axis.
Ify = athenw = e e™ = —e= € R~ hence the upper boundary of the strip is mapped to the
negative u axis.

If0 <y <athensincew = e (cos (52) +isin(52)) clearly the imaginary part is positive, so D is
mapped to the upper half plane.

3. Let D be a semi-infinite strip of width a such that * < x < § and y > 0 and consider the mapping
w = sin (Z£).
. (T .
w = sin <E(x+ zy))
= sin (E) cos (ﬂ) + cos <E> sin (ﬂ)
a a a a
G Y 4 cos () sinh (7Y
fsm< p >cosh( p )—i—zcos( p )smh( p )

because
8129 —i26 —6 0
in (i0) = = —i = isinh 6
sin (i6) oF i 2 is

and similarly
20 —i%6 -0 0
COS(iG):e +26 ¢ 2+€ = cosh 6
Now, if x = % then w = cosh % € R*. But coshf > 1 for all 8, so the left boundary of the strip is

mapped to the u axis for u > 1.

If x = 52 then w = — cosh 7 which by the same argument as above is the u axis for u < —1.
If 5% < x < & then —1 < w < 1 which accounts for the remaining part of the u axis. Finally, observe
that - < x < § gives v > 0 so this region is indeed the upper half plane.

4. The Mobius transformation can be used to map polygons and circles to the upper half plane. Let

az+b
cz+d

with ad — bd # 0. In particular the transformation to use for the unit circle is w = i—;;

w =

Theorem 15 (Riemann’s Mapping Theorem) Let D and D' be dimply connected domains. Then there exists a function

w(z) which is analytic in D which conformally maps D to D'

Riemann’s Mapping Theorem shows that a conformal mapping can always be found, but does not suggest

how. The four mappings presented above should suffice for most purposes.

The method for solving a partial differential equation by use of conformal mappings is as follows.

1. Choose the conformal mapping and convert the boundary conditions.
2. Solve the differential equation in (u, v).
3. In the solution, substitute for (1, v) with (x, y) using the equations determined by the chosen mapping.

Example 16 Solve V2T = 0 in the infinite wedge of angle %. The boundary 0 = 0 is maintained at temperature Ty

while the boundary 6 = % is maintained at temperature Ty.
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Proof. Solution Using the conformal mapping z + z3 the problem is transformed to

9’T 9T To u>0
T+ 2y =0 with (0= "
ou v Tl u<o

Using Poisson’s formula,

T(u,v) = %/‘” f(s)

—oo (U —8)2 + 02
Ty [ 1 vy 0 1
K —/ 4
m Jo (u—s)?+0? s+ T J—oo (U —35)2+ 12 °

2 forn (45 )] 2 frn ()]
= — |arctan + — |arctan | ——
7T v 0 7T 14 o

To To —u Ty —u T
= —— —arctan|{ — ) + —arctan | — | + —
2 7T v 7T v 2

T _ _
=0 +h + h-To arctan (—u)
2 T v

Now, using DeMoivre’s theorem
w=u+iv=(x+ z'y)3 = (rcos 0 + risin 0) = 13 cos 30 + ir> sin 30

So u = cos 30 and v = sin 30 hence

To+T  T1—T
orh, 1T o

T(r,6) =

arctan (— cot 30) 0

(24.1.6) Well Posed Problems

It is not necessarily the case that any partial differential equation will have a solution. Indeed, even if a

solution exists it may break now in part of the solution region.

Definition 17 A boundary value problem is well posed if the following criteria are met.

1. Existence—the problem has a solution.
2. Uniqueness—the problem has only one solution.

3. Continuous dependence on boundary values—a small change in the boundary values causes a small change in
the solution.

The first two criteria are rather obvious, the third requires a little more attention. It essentially means that the
solution is quite stable—if the boundary temperatures in a diffusion equation problem were altered slightly,
it would be reasonable to expect to have a similar solution. The usual way to show the third criterion is to
consider a perturbation.

The | Dimensional Wave Equation

D’allembert’s solution is

1 1 xtct
Y = 5 (o + et + yolx = et) + o [ (e ds

x—ct
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Consider two solutions y1(x) and y»(x) with initial conditions

) _ 0 _
NnEO=w® F=uw® pE)=wE+IE  ZF =+
The difference between the two solutions is then
1 o o 1 x—+ct _ 1

Y = yolx, t) —yr(x, t) = (E (yo(x + ct) + Y(x + ct) + yo(x — ct) + J(x — ct)) + % /X%t v0(s) + o(s) ds> — (E (yo(x + ct) + yo(x -

1 1 ~X+-ct

== (Yx+ct)+y(x —ct)) + — / 7(s) ds

2 2¢ Jx—ct

Hence |Y| < max |y| + t max [3]. Hence

Ve>0 36>0 suchthat max(max|y|, max|7]) <d=|Y|<e¢

Hence criteria 3 holds, and the problem is well posed.

Initial Value Problem For Laplace’s Equation

Consider Laplace’s equation on the upper half plane with u(x,0) = ug(x) and g—; =0 = vp(x). Seeking a
particular solution, in the special case 1y = 0 and vy = % sin Ax. A solution is

1} ~ Ll Axsinh A

i(x,y) = 2 SinAxsinh Ay
As A — oo clearly vg — Obut fory # 0

sinh Ay N — e N
A2 2A?

maXx ‘ﬁ| = — 00
Consider now the general problem as initially stated. Since i is a particular solution, it can form part of a
general solution u = U + . As A — oo the boundary conditions are still satisfied but i — oo and hence

u — oo. This shows the problem to be ill posed since

Ve >0 dK >o0 suchthat max

<e and max|u(x,y)| > K
ay'yO Y

(24.1.7) Second Order Partial Differential Equations
Homogeneous Equations & Classildation

A second order homogeneous partial differential equation may always be expressed in the form

%u %u %u

where A, B, and C are constants. In this simple case it is quite easy to find a solution. Take some function
f(x + Ay) then
0“u “u

22N 7 1
o = F A Gl = A )

u E)Zu_,, ou .,
oy =St Sa =ty S =AY

2 2
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Substituting this into the differential equation gives

Af"(x 4+ Ay) + BAf"(x + Ay) + CA2f"(x + Ay) = 0
F(x+ Ay) (A +BA+ C/\z) -0

so f'(x+Ay)=0

or A+BA+CA2=0

. —B++VvB2—-4AC
1.e. )L - T

The nature of A is used to classify the equation.

e If A has two distinct values, so B2 —4AC > 0, then the equation is hyperbolic.
e If A is repeated, so B> — 4AC = 0, then the equation is parabolic.

e If A is complex, so B2 — 4AC < 0, then the equation is elliptic.

In the case of a hyperbolic equation the solution will be of the form u = f(x + Ayy) + g(x + A2y), and
similarly for the elliptic case. However, in the parabolic case part of the solution is ‘missing’. It is readily
shown (by differentiating and substituting) that u = h(x, y)g (x + %) where h turns out to be h(x,y) = x.

The proper solution is then

u(x,y):f(x— %) +xg (x— %)

General Second Order Partial Differential Equations

A general linear second order partial differential equation has the form

%u %u ou ou ou
A(x,y)@ + B(x,y)m + C(x,y)@ =F (x,y, u, F @) (18)

where F may in fact be non-linear. One of three possible types of boundary condition may apply.

o Dirichlet: u is specified on the boundary.

e Neumann: g—:‘l = Vu - nis specified on the boundary, where n is the normal unit vector.

e Cauchy: u and % are specified on a curve in the solution region.

Consider the Cauchy problem for a curve C with normal vector n and tangent vector r. Let s be the arc
length along C and say
Ju
=) S =)

on C. At any point on C
dr= dxi+ dyj and nds= dyi— dxj

Hence
ou dr  dudx  dJudy d¢
3 VU ds T axds Tayds  ds (19)
WGy g dudy oudx 0

on ~oxds dyds
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These are simultaneous equations for % and g—; on C. Using the chain rule

d _dyrd dyd

ds  dsdx = dsdy

Hence
4 (ou) _dxdu  dy P on
ds \ox/ dsox2  dsdxdy
2 2
d (o) _dx Pu , dyu o
ds \ 9y ds oxdy  ds 9y?

Equations (18), (21), and (22) are simultaneous equations for the second partial derivatives of u. There is no
solution when

A B
dx d —
£ % o=
0 % &
S A dy 2—B%ﬂ—&-c dx 2—0
ds ds ds ds)
. ds\? .
now multiply through by i to give
dy ds 2 dx ds dy ds dx ds 2_
A(&a) ‘B(gaaa)”(&a) =0
dy\* pdy . _
A(a) —Ba—i-C—O (23)
dy B+ VBZ—4AC
dx 24 @)

Equation (23) defines the curves in the xy plane on which the second partial derivatives of 1 cannot be

found. These curves are called characteristics and can be determined using equation (24).

e When B? — 4AC > 0 (hyperbolic) two families of curves in the xy plane are produce.
e When B? — 4AC = 0 (parabolic) one family of curves in the xy plane is produced.

e When B? — 4AC < 0 (elliptic) two families of curves in the xy argand 4-space are produced.

Since A, B, and C are not constant the classification of the equation is local. However, when they are constant

the characteristics are simply straight lines.

Along characteristics propagates partial information about the solution. The differential equation can only
be solved in regions where the characteristics intersect. It may therefore be impossible to solve the equation

after some time T, say. This is illustrated in Figure 24.1.7

Canonical Forms

A simple change of variable in a partial differential equation can drastically simplify its expression. Indeed,
the new variables x 4+ Ay (for both values of A) would simplify the solutions to equations. This is in fact
precisely the transformation required. Once the equations are simplified, they are said to be in canonical
form.
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Act

cT

13

s

Example 25 Consider the equation
4a2u
d
then the characteristics solve
dy _
dx

5——
x2+

5++/52—44.1

u known here

AN

Figure 1: A solution cannot be found after time T.

%u

o

o%u n
0xdy

1

7 =1or

Thereforey = x +cory = %x + c where c is a constant. Hence define the new variables

1
N=y-x L=y X
Hence
_ o9 9o 9 19
ax ox oy | 9x oy 409C
0 909 99 0 0
dy oyan oyor oy o
Now substituting into the original equation,
A R CCR LAY YA
oy 49C oy 497 49 ol ac)
?u  9%u | 10u 82u 59 82u 50%u 82u *u | %u
4= 42 + o +2 =0
on? ool 49¢ oz 4 8178@ ol 4972 az2 ' “onac
2
Uy
0179¢

This is in fact a general result for second order hyperbolic partial differential equations with constant coefficients.

More generally the non-homogeneous equation would reduce to

%u
aqag

Ju Ju
8 50 5

(ven i)

Elliptic equations in canonical form are Poisson’s equation, and parabolic equations reduce to the form

il
a2

ou o
grul a]/]/ aé

and )



14 CHAPTER 24. MSMYA1 PARTIAL DIFFERENTIAL EQUATIONS

which can be solved by integration. It is clear that transforming to canonical form allows the equation to be

solved using a method already covered.

In the three cases of hyperbolic, elliptic, and parabolic equations the change of variable chosen is slightly
different.

e For hyperbolic equations the characteristic equation is of the form y = px + c where p takes one of

two values, p; and p; say. The change of variables is then { = y — pyjx and 7 = y — ppx.

o For elliptic equations there is only one characteristic equation, y = px + ¢ say. The change of variables

is(=y—prxandy = x.

e For a parabolic equation there are two characteristic equations but x has a complex coefficient, say
y = (p £ ig)x + c. In this case the change of variables is of the form ¢ = { + iy and so { = y — px and

n = —qx.

(24.1.8) Integral Transform Methods
Laplace Transforms

Recall that the Laplace transform of a function g(t) is given by

GGs) = £ (3(D) = /0 elg(t) dt
the function g(t) must be of exponential order. Some results to remember include

L(g'(t) =sL(g(t) — g(0)
L(g"(t) =L (g(t)) — sg(0) — '(0)

t
g*h:/o SWh(t —y) dy
L(gxh)=L(g)L(h)

Once a solution has been found under the transform, the inverse transform must be applied. The Bromvich

inversion formula for a Laplace transform is

n=L [t )d
0= g [ GO
This integral is along an infinite vertical contour in the complex plane of s. The value of v is chosen such
that the contour lies to the right of any singularities. Such an integral can be evaluated by considering a

semicircle and using methods involving complex residues

Example 26 A simple example is the one dimensional wave equation.

2
‘L’; with  y(x,0) =0 Wl g y(0, 1) = g(t)

%y 1
o2 2 ox ot |,
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Taking Laplace transforms with respect to t gives

0%y 0%y
£ (@) = a2

Py _ oo 9y
L (W) =57y —sy(x,0) — e

L (g(1) = Gs)
Constructing the Laplace transform of the differential equation gives

%y s
w2~ a? o

Treating this as an ordinary differential equation in x gives
7=A@s)e e +B@s)e

Imposing the condition y — 0as x — oo gives B(s) = 0. Putting x = 0 gives A(s) = G(s). Now using the Bromvich

inversion formula

Ytico —sx
! / G(s)e ™ et ds

y= Tﬂ’l y—ioco
Y+ico N
= L/ G(s)es(t*?) ds
27Tl ’Y*iOO
_ 1 ry+ico st
but g(t) = o= /Aﬁim G(s)e ds

hencey:g<tf E)

c

A similar process can be performed for the diffusion equation

oT  _9°T
 _pi_ _ o S
Fr ox2 T(x,00=0 T(0,t) =sin(wt) x>0

Taking Laplace transforms with respect to ¢ gives Dg —sT = 0. Recall that £ (sin (wt)) = o7 and hence

)

soT = L/AYJFI.OOLexp (—x (st—%)) ds (27)

2711 Jy—ico W2 + 52

There is a problem in that the integrand is not single valued inside the “large D shape” round which it will

be integrated since for example where s = ¢’

e At0=0s5=¢"=1.
e At =21 /s =¢" = —1.

These problems occur every time 6 goes round by another revolution. To stop this a branch cut is made—the

negative real axis is removed. The (closed) contour of integration now becomes

1. Quarter circle from 7 + iR to —R*.

*The point —R has been removed by the branch cut, but it is possible to get arbitrarily close to it.
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2. Line in the upper half plane from —R to —e.

3. Circle, clockwise, or radius € from —¢ to —e. The limit is taken as ¢ — 0.
4. Line in the lower half plane from —e to —R.

5. Quarter circle from —R to y — iR.

6. Straight line from 7y — iR to 7y + iR.

The value of this integral is 271i times the sum of the residues in the interior of the contour. Using this and
taking the limit as R — co the Bromvich integral can be evaluated.

Lemma 28 (Jordan’s Lemma) Let yg = {z | z=Re? for 0 < 6 < n} and suppose that M(R) = sup |f(z)|. Then
ZETR
if lim M(R) =0,
R—o0

lim e f(z) dz =0
R—00 Jyg

foralla > 0.

Theorem 29 (The Residue Theorem) Suppose that <y is a simple closed contour in a domain D, and let f be a complex

function which is analytic on D except at finitely many points, p1, py, . .., px, all of which line in Inty. Then

k
/ f(z) dz =2mi ) Res (f, p;)
r i=1

Returning to the example of the diffusion equation, on the circular parts put s = Re’” and hence by Jordan’s

Lemma these integrals are zero.

On the small circle round the origin put s = ee’® % = ige'. Substituting into the integrand gives

1 (7w i € it .0
i /n o 1 27 exp (ee pXe? | eie de

By using series expansions, this integral is asymptotic to

—7
i/ ¢ 4o — 0
27

SO

Hence there is no contribution from the small circle. Finally the two straight line parts along the real axis
must be integrated over. For the upper part let s = —¢ = ¢¢'” so that g—; = —0. Remembering to change

the limits, this gives

/OL —ot — oe'r (—1)da—/ooL —ot—1i g do
oow2+‘72exp ) = s w2+02exp i\ 5

Similarly, for the lower part let s = —c = ge ™", giving

/OL —ot—x ge " (—1)da*—/mLx ot +ivy/ L) do
w w2 o2 P D T 21 2P D

Observe these integrals are over the same interval and the exponential terms are complex conjugate. This

suggests that when added they will combine to a sine or cosine function. Doing this gives

(o]
—21'/0 #Wef‘” sin (x, / %) do (30)
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Now, inside this contour there are two singularities—at s = Fiw. These are both simple polesJr and so are

easily evaluated.
Res L exp | st —x s Jiw | = & exp | iwt — x\/@
(s +iw)(s —iw) V' D 2iw D
Res * exp | st — x\/E ,—ilw | = ;w exp | —iwt —x v
(s + iw)(s —iw) D 2iw D

Now, Vi = Vel? = ¢l = %(1 + 7). Hence adding these residues and multiplying by 27ri gives

. L | w . L | w .. w w
exp | iwt — x(141) D —mwexp | —iwt —x(1 —1i) D =2misin | wt — x D exp | —x D

Now using this with equations (27) and (30) and the residue theorem gives

2miT = 27ti sin <wt —x %> exp (—x, / %) —|—2i/0 wZL—FUZE_Ut sin (x, / %)
T =sin | wt —x £ exp [ —x @ + L /w Wt sin | x g
o 2D P \V 2D mJo w?+0? V' D

Fourier Transforms

In a similar way to Laplace transforms, Fourier transforms can be used to solve partial differentia equations.
Again, it is inverting the transform to find the final solution where problems tend to lie. Consider again the

diffusion equation and take Fourier transforms with respect to x to give

— T
—DK°T = —
ot
Let T(x,0) = Tp(x) so integrating and using this,
T = Toe_Dkzt

The most difficult part of the problem, as ever, is to invert the transform. Perhaps the easiest way to do this

is use standard transforms and convolution. Recall that

frg= [ Fu)gt—y)dy

F(f*g)=F(f)F(g)

where the Fourier transform is being taken with respect to x. The solution to the differential equation is

now in the form F (Tp) F (g) where g is to be determined. Recalling that

oxp (75)

‘7:71 e*Dkzt _
( ) vVanDt
it is evident that the solution is
—(x—y)*
T(x t)—/oo To( )exP( ") d
' o VY 4rDt

*Like the Pope but different.
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(24.1.9) The Maximum Principle

Theorem 31 (The Maximum Principle For Laplace’s Equation) Let D be a connected bounded open set in 2 or 3 di-
mensions. Let u(x) be a continuous harmonic function in D. Then the maximum and minimum values of u are

attained on the boundary of D and nowhere inside D (unless u is constant).
Proof. Working only in 2 dimensions, a local maximum is attained when % < 0Oand g—ylz‘ < 0. Now, u is

harmonic and so obeys Laplace’s equation, % + % = 0 everywhere in D. Let v(x) = u(x) + ¢[x|2. Then

V20 = V2u + eV2|x|?
= eV?|x|?

=4¢ (or 6¢in 3 dimensions)

But at a local maximum V2o = 0 and hence v can have no such point in D and so must attain its maximum

at a point xg, say, on the boundary of D. Now,
u(x) < v(9) < vlxo) = ulxo) + o

which in turn is less than the maximum value of u on the boundary of D plus e/?> where [ is the greatest
distance from any point in D to the origin. Since this holds for all x € D it must be the case that u attains its
maximum on the boundary of D. A similar argument shows the minimum to be attained on the boundary
also. U



