
Chapter 18

MSMXS2 Linear Statistical Models

(18.1) Statistical Inference

(18.1.1) Inference On The Normal Distribution

The Normal distribution is of great interest, as it can be used to model many naturally occurring events, and
indeed the Central Limit Theorem means that most other distributions can be approximated by the Normal.
The Normal distribution is therefore the preferred choice of distribution for modelling some population
characteristic, X, say.

Suppose that (X1, X2, . . . , Xn) are independent and identically distributed Normal random variables, say
N
(
µ, σ2). A random sample of these variables may yield data (x1, x2, . . . , xn). Having observed data it is

of interest as to how it can be used to predict either µ or σ or both if they are unknown.

(18.1.2) Inference When The Standard Deviation Is Known

This situation is not entirely implausible, as measuring equipment may have a known inaccuracy, giving
rise to a value for the standard deviation σ. In this situation µ is estimated by the value

µ̂ = X =
1
n

(X1, X2, . . . , Xn) (1)

Since a sum of Normal distributions is again a Normal distribution∗ and so it is readily shown that X ∼
N
(

µ, σ2

n

)
and so

X− µ
σ√
n

∼ N (0, 1)

This statistic may now be used for a hypothesis test, which works as follows.

• For the null hypothesis, select a suspected value of µ, say µ0.

• For the alternative hypothesis use µ 6= µ0.

• use the test statistic Z = X−µ0
σ√
n

which has a standard Normal distribution when µ0 is true.

• Reject H0 in favour of H1 if the value z, of Z, obtained with data (x1, x2, . . . , xn) lies in the extreme of
the Normal distribution, i.e. if |z| > c, say.

The probability
P = p (Z > |z| or Z < −|z|)

∗Although this seems ‘obvious’ it in fact requires rather a lot of work to show.
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2 CHAPTER 18. LINEAR MODELS

is called the attained significance level, or ‘P value’. Typical rejection points are when P is less than 0.05,
0.01, or 0.001.

It would of course be possible to find z and then compare to the known rejection points corresponding
to the required significance level and indeed this used to be standard practice. However, the invention
of computers has made it possible to calculate the attained significance level, which provides information
about how significant a result is.

A significance test evaluates the plausibility of a value of µ, but surely there is a whole range of values for
µ that would be accepted. This is (informally) the basis of a confidence interval. A confidence interval for µ

is calculated as

p

(
L <

X− µ
σ√
n

< U

)
= 1− α

Where 1− α is predetermined, and L and U represent points on the standard Normal distribution that are
to be determined.

It is easy to see the parallel between a confidence interval and a hypothesis test. All the values of µ that the
hypothesis test accepts at the 100α% level lie in the 100(1− α)% confidence interval.

The meaning of a confidence interval is “it is 100(1− α)% likely that the interval will contain the true value
of µ”. Note that µ is fixed but unknown, while the interval is the variable quantity. Note also that in a
hypothesis test, rejecting H0 is a ‘strong’ result, while accepting it is weak.

(18.1.3) Inference When The Mean Is Known

Clearly, the variance will be estimated by the value

σ̂ =
1
n

n

∑
i=1

(Xi − µ)2 (2)

However, although a sum of Normal distributions is a Normal distribution, the same does not hold for the
sum of squares of a normal distribution.

Definition 3 Suppose that (Z1, Z2, . . . , Zn) are independently and identically distributed N (1, 0). Put Y = Z2
1 +

Z2
2 + · · ·+ Z2

n then Y is said to follow a χ2 distribution with n degrees of freedom.

There are three main shapes to the χ2 distribution, as are shown in Figure 1.

6

-
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6
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n = 1 n = 2 is an exponential distribu-

tion with parameter 1
2

n > 3

Figure 1: The three main shapes of the χ2 distribution.

Now, var Zi = 1, and since var Zi = EZ2
i − (EZi)

2, it follows that EZ2
i = 1. Therefore,

EY = E
n

∑
i−1

Z2 =
n

∑
i=1

EZ2 =
n

∑
i=1

1 = n
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It can also be shown that var Y = 2n. Note also that

• if Y1 ∼ χ2
n1

and Y2 ∼ χ2
n2

are independent χ2 distributions, then Y1 + Y2 ∼ χ2
n1+n2

.

• If (X1, X2, . . . , Xn) are independently and identically distributed N
(
µ, σ2) then

X1 − µ

σ
,

X2 − µ

σ
, . . . ,

Xn − µ

σ

are independently and identically distributed N (0, 1) and so

n

∑
i=1

(
Xi − µ

σ

)2
∼ χ2

n i.e.
n

∑
i=1

(Xi − µ)2 ∼ σ2χ2
n

When µ is known, the estimator of σ2 is

σ̂2 =
1
n

n

∑
i=1

(Xi − µ)2 (4)

The sampling distribution for σ̂2 is based on the statistic

nσ̂2

σ2 ∼ χ2
n (5)

Using the χ2 distribution is is possible to find confidence intervals and do hypothesis tests in the usual way.

The appearance of σ2 in the statistic amy at first look a little unusual, but this is not so. The value of σ̂2

is provided by the data, making σ2 the only variable in a similar way to the estimation of µ when σ was
known.

(18.1.4) Inference When Buth Mean And Standard Deviation Are Unknown.

Perhaps the most realistic situation, it is of course the most difficult. Notice that in the estimator of σ2 in (4)
the value of µ is used. However, in this situation this must be replaced by the estimate of µ, x. This produces
the maximum likelihood estimator

σ̂2 =
1
n

n

∑
i=1

(Xi − x)2

but this is biased. The unbiased estimator is

s2 =
1

n− 1

n

∑
i=1

(Xi − x)2 (6)

The estimator for µ is supposed to be in standardised Normal form, but this is not possible since the variance
is unknown. Notice that

X− µ
S√
n

=

X−µ
σ√
n√
S2

σ2

Which is in the form
N (0, 1)√

χ2
n

n

and so has a t distribution.

The estimator of σ2 also changes, as a known value for the mean is not available. The new sampling distri-
bution now needs to be found.

Theorem 7 If (Z1, Z2, . . . , Zn) are independently and identically distributed N (0, 1), then
n

∑
i=1

(
Zi − Z

)2 ∼ χ2
n−1.
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This seems quite reasonable as
n

∑
i=1

(
Zi − Z

)2 =
n

∑
i=1

Z2
i − nZ2 which is the difference between a χ2

n and a χ2
1

distribution. So the result is plausible.

Theorem 8 If (Z1, Z2, . . . , Zn) are independently and identically distributed N (0, 1), then Z and
n

∑
i=1

(
Zi − Z

)2 are

independent random variables.

Theorem 9 If (X1, X2, . . . , Xn) are independently and identically distributed N
(
µ, σ2) then

1. X ∼ N
(

µ,
σ2

n

)
.

2. (n− 1)
s2

σ2 ∼ χ2
n−1.

3. X and s2 are independent random variables.

Bearing these theorems in mind, an appropriate distribution for s2 is now defined.

Definition 10 If W and Z are independent random variables such that W ∼ χ2
m and Z ∼ N (0, 1) then

Z√
W
m

∼ tm

is a Student’s t distribution with m degrees of freedom.

Using this distribution the usual hypothesis test and confidence interval calculations can be performed
using the test statistic

T =
X− µ

s√
n

(11)

to make inference about µ.

(18.1.5) One Tailed And One Sided Tests

So far it has been assumed that in a hypothesis test the alternative hypothesis will be µ 6= µ0. Consider the
following.

Example 12 Environmentalists† collect data about the levels of ozone in a forest and construct the following test.

• H0 : µ = µ0.

• H1 : µ > µ0.

• Significance level of 1%.

The attained significance level is found to be 0.007, and on the grounds of this the environmentalists tie a small
inflatable dinghy to a large supertanker.

There is a serious conceptual flaw with this test. While it is physically possible for the ozone level to be
lower than anticipated, this possibility is not entertained. If it was, then the result would not have been
significant. The effect of this kind of one sided test is to make results more significant than they actually are
— getting the result you want.

One tailed tests, however, are not necessarily one sided, for example on the χ2 and F distributions where
rejecting in the lower tail would represent an exceptionally good (rather than bad) result.

†Cynicism suggests that environmentalists take the hypothesis testing opinion “either something is as we expect it to
be, or else its worse”.
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(18.1.6) Comparing Two Samples

It is often of interest to compare two populations, rather than make inference about just one. In the simpler
case, data values are compared and some function of each pair (difference for example) is of interest. For
example, comparing measurements of the same thing taken using different equipment. The pairing of the
data in this way means that the data can be treat as one sample, and a T statistic will usually be used.

The more complicated case is to determine whether two populations are ‘comparable’. In hypothesis testing
terms, whether or not there is a significant difference between the populations.

The F, Distribution

The fourth major distribution used in statistical inference of this kind is the F, distribution.

Definition 13 If W ∼ χ2
m and V ∼ χ2

n then
W
m
V
n
∼ Fm,n

which is an F, distribution with m and n degrees of freedom.

The F, distribution has much the same shape as the χ2 distribution, but unlike the χ2 which is centred
around n, the F, distribution is centred around 1.

When n is large, the F, distribution approaches a χ2
m. Also, F1,n = tn.

Comparison Of Variance

When comparing means of Normally distributed samples, it has to be assumed that the variances are the
same. It is therefore of interest, beforehand, to compare variances.

Suppose that

• (X1, X2, . . . , Xm) are independently and identically distributed N
(
µ, σ2).

• (Y1, Y2, . . . , Yn) are independently and identically distributed N
(
µ, τ2).

and that the Xs and the Ys are independent.

Put S2
X =

1
m− 1

m

∑
i=1

(
Xi − X

)2 and S2
Y =

1
m− 1

n

∑
i=1

(
Yi −Y

)2

Then
(m− 1)S2

X
σ2 ∼ χ2

m−1 and
(n− 1)S2

Y
τ2 ∼ χ2

n−1

Hence
τ2S2

X
σ2S2

Y
∼ Fm−1,n−1

This can be used to test the hypothesis σ2 = τ2 against the alternative hypothesis σ2 6= τ2.

Statistical tables usually give percentage points on the F, relating the probability to the left of some point
x, so if a statistic is calculated to have value less than 1, the tables will not be of immediate use. (The F,

distribution is centred around 1). To this end, it is useful to note that

Fn,m =
1

Fm,n
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Comparison Of Means: Two sample t Test

It is assumed that the two Normal distributions under consideration have the same variance, hence the
relevance of the previous section. Computer statistics applications can approximate the statistical test about
to be described, but even so this is an unsatisfactory solution to the problem.

Suppose that

• (X1, X2, . . . , Xm) are independently and identically distributed N
(
µ, σ2)

• (Y1, Y2, . . . , Yn) are independently and identically distributed N
(
λ, σ2)

then σ2 is estimated with the pooled sample variance,

σ̂2 = S2 =
(m− 1)S2

X + (n− 1)S2
Y

m + n− 2

=
∑m

i=1
(
Xi − X

)2 + ∑n
i=1
(
Yi −Y

)2

m + n− 2

Note that this is an unbiased estimator. S2
X and S2

Y both have a χ2 distribution of sorts, and so it can be
shown at

m + n− 2
σ2 S2 ∼ χ2

m−1 + χ2
n−1 = χ2

m+n−2

In comparing distributions, interest lies in the ‘difference’ between them, and so it is found that

X−Y ∼ N
(

µ− λ,
σ2

m
+

σ2

n

)
Hence

N (0, 1)√
χ2

n
n

gives

X−Y−(µ−λ)
σ
√

1
m + 1

n

1
σ

√
∑m

i=1(Xi−X)2
+∑n

i=1(Yi−Y)2

m+n−2

=
X−Y− (µ− λ)

S
√

1
m + 1

n

∼ tm+n−2

Note the factor of
1
σ

in the denominator. This is necessary to put the variance estimate S2 into a form where

it has a χ2 distribution.

Using this distribution, it is possible to do the usual significance tests and confidence intervals.

This kind of two sample comparison is quite different from a paired comparison, where there is really only
one sample — made by combining two other samples — under test.

It is important to perform an F, test to ensure that the variances could be the same. Of course, this being a
significance test, even if there is no significance there is no guarantee that the variances are in fact the same.
Furthermore, care must be taken when working with small samples in which case the F, test is particularly
weak.

(18.2) Linear Models And Analysis Of Variance

(18.2.1) Comparison Of Means

In the previous section, two means were compared. This is now extended to k means. It is impractical to use
a t test as the calculations involved would be rather excessive. Instead, two ways to estimate the variance
are found, only one of which is an estimator when the means are equal. Hence an F, test can be used.
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Model 14 With notation as described below, yij ∼ N
(
µi, σ2) and are independent.

This may be stated as yij = µi + εij where εij ∼ N
(
0, σ2). Or as yij = µ + θi + εij

The two formulations lend themselves naturally to a significance test.

With many samples being taken, the general data value will by yij which denotes the jth value from sample
i. Hence the following relationships

1. yi =
1
ni

ni

∑
j=0

yij.

2.
k

∑
i=0

ni = N.

3. y =
1
N

k

∑
i=1

yi =
1
N

k

∑
i=1

ni

∑
j=0

yij

Note that some texts may use a dot or bullet so show that one of the subscripts has been summed over and
hence disappeared.

It is clear that a mean may be calculated for each sample, or for all of samples at once. Similarly,

• the variance of the sample means about the mean of all the samples is called the between sample
variance, and is calculated by the sum

S2
B =

1
k− 1

k

∑
i=1

ni

∑
j=1

(yi − y)2 =
1

k− 1

k

∑
i=1

ni(yi − y)2 (15)

• the variance for each sample can be calculated, and since the variance of a sum is the sum of variances,
the within sample variance, or pooled sample variance is given by

S2
W =

1
N − k

k

∑
i=1

ni

∑
j=1

(yij − yi)
2 (16)

Now, by definition of the χ2 variable,
N − k

σ2 S2
W ∼ χ2

N−k. Hence the between sample variance is always an

estimator for σ2, the variance of the distribution from which all the data are thought to have been drawn. It
is found that this is an unbiased estimator. S2

W can therefore be used for inference about σ2.

Also, when y = µ where µi = µ ∀i — an important null hypothesis — again by the definition of the χ2

variable,
k− 1

σ2 S2
B ∼ χ2

k−1 It is found that this is not an unbiased estimator, since

E S2
B = σ2 +

∑k
i=1 ni(µi − µ̃)2

k− 1
where µ̃ =

∑k
i=1 niµi

N

Note that µi is the theoretical value of yi. However, when the null hypothesis µi = µ ∀i is true, this biasing
amount will become zero, so S2

B is also an unbiased estimator for σ2.

In the last few paragraphs, a hypothesis test has been repeatedly mentioned without specification. The
point of this analysis is the following: It is desired to test H0 : µi = µ ∀i i.e. all the samples are taken from
distributions which have the same mean.

From above, both S2
W and S2

B estimate σ2 when H0 is true. Hence the statistic
S2

B
S2

W
∼ Fk−1,N−k is of interest.

Bearing in mind that an F, has mean 1, if the value of the statistic is sufficiently greater than 1 then the null
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hypothesis is rejected. If the value is less than one then S2
B must be exceptionally small, so the sample means

are closer to µ than expected and so the null hypothesis is accepted.
This is an example of a test that is one-tailed but not one-sided.

An Analysis Of Variance

The within sample variance, S2
W , measures the variance of the sample values around the respective group

means. The between sample variance, S2
B, measures the variance of sample means about the mean of all

the data. However, since all the data is supposed to come from the same distribution, the obvious question
all along has been as to the variance of all the data about the mean of all the data. This can be analysed as
follows.

k

∑
i=1

ni

∑
j=1

(
yij − yi

)2
=

k

∑
i=1

ni

∑
j=1

(
yij − yi − y + y

)2

=
k

∑
i=1

ni

∑
j=1

(
yij − yi

)2
+

k

∑
i=1

ni

∑
j=1

(yi − y)2 − 2
k

∑
i=1

ni

∑
j=1

(
yij − yi

)
(yi − y)

=
k

∑
i=1

ni

∑
j=1

(
yij − yi

)2
+

k

∑
i=1

ni

∑
j=1

(yi − y)2

= (N − k)S2
W + (k− 1)S2

B (17)

If the null hypothesis is true, then effectively there is just one large sample if size N and so

k

∑
i=1

ni

∑
j=1

(
yij − y

)2
∼ σ2χ2

N−1

This is justified (but not proved) by observing that the right hand side in (17) is a sum of two χ2 distributions
with degrees of freedom N − k and k− 1. Also, S2

B and S2
W are independent random variables.

One-Way Analysis Of Variance

Equation 17 is the basis of all analysis of variance. What the equation says is that the sum of squares can be
split between variability of the group means about the actual mean, and some residual error in variability
of data about their respective group means.

Implicit in this is the hypothesis that the group means are equal, and indeed if the sum of squares partitioned
into S2

B is significantly large (F test) then this hypothesis should be rejected. The virtue of expressing the
residual error about respective group means is that even if the null hypothesis is false S2

W is still a valid
estimator of σ2, the variance of all the data about is mean.

In practice it is possible that there may be many clear ways to group the data. For example, the height of
children may be grouped by age, sex, weight, etc. Once the grouping has been decided upon S2

B and S2
W

can be calculated, and this is a one-way analysis of variance. This is usually set out in a table, as shown
theoretically in Table 1

The term “mean square” refers to the sum of squares divided by its degrees of freedom. This produces the
number S2

B or S2
W , the ratio of which produces the required F statistic.
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Source D.F. Sum Of Squares Mean Square F statistic ‘P’ value

Between samples k− 1 ∑k
i=1 ni (yi − y)2 S2

B S2
B ÷ S2

W 1− p(F < f )

Within samples N − k ∑k
i=1 ∑ni

j=1

(
yij − yi

)2
S2

W

Total N − 1 ∑k
i=1 ∑ni

j=1

(
yij − y

)2

Table 1: One-way analysis of variance
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Figure 2: Interpretation of contrasts.

Orthogonal Contrasts

Having performed a one-way analysis of variance the between group sum of squares can be further parti-
tioned to find what proportion of the sum of squares arises from which group. It could be the case that only
a few of the groups are of interest rather than all of them. Any such situation can be modeled by taking a
linear combination of the groups. The coefficients of such a combination form a row vector, which is called

a contrast if
k

∑
i=1

li = 0. Contrasts l and l′ are orthogonal if l · l′ = 0 and are of interest as they can be used to

partition the between group sum of squares.

The elements of a contrast may be chosen at will—provided of course that they add up to zero. However,
what contrasts to use should be decided before receiving the data to make sure that they have a realistically
meaningful interpretation. Contrasts can be used to identify relationships between the group and its mean
— say the children’s height increases with their weight. Provided that the values of the group are equally
spaced, the contrast of the form

(
−1 0 1

)
corresponds a linear relationship since two points supplied by

the two groups can be used to determine the line, and the weights in the contrast correspond to where the
line ought to be. The contrast can be of any length as long as it contains a −1 and a 1 and the other entries
are zero. This is illustrated in Figure 2. Similarly, three points are needed to determine a parabola, and so a
second contrast corresponds to a quadratic relationship between treatment and group mean.

The between group sum of squares can be ‘resolved’ in the ‘direction’ of the contrasts. The relationship
between the elements of the contrast (the last is a linear combination of the preceding ones) effectively
remove a dimension from the vector space — corresponding to a degree of freedom.

It is assumed that each of the k groups has the same number of data values in it, n. Where the contrasts are
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l1, l1, . . . , lk−1 with elements denoted by lij , the formula is

S2
B = n

(
∑k

i=1 l1i yi

)2

∑k
i=1
(
l1i

)2 + n

(
∑k

i=1 l2i yi

)2

∑k
i=1 (l2i )

2 + · · ·+ n

(
∑k

i=1 l(k−1)i
yi

)2

∑k
i=1
(
l(l−1)i

)2

When the null hypothesis—that the group means are equal—is true, each component is independent and
has distribution σ2χ2

1. F tests can be performed by finding the ratio of contrast partition mean square over
error mean square.

Two Way Analysis Of Variance

It was mentioned above that there may be more than one possible grouping of the data. Each datum can
then be though of as a combination of two distinct effects, and an error, as set out in Table 2.

B1 B2 . . . Bb
A1 y11 y12 . . . y1b
A2 y21 y22 . . . y2b

...
...

...
. . .

...
Aa ya1 ya2 . . . yab

Table 2: Two effects contribute to the value of a datum.

Model 18 The data are modeled by the formula

yij = µ + αi + β j + εij

where α and β represent the A and B effects, and ε is the error.

To ensure the number of parameters being estimated does not get too out of hand, the constraint

a

∑
i=1

αi =
b

∑
j=1

β j = 0

is imposed, giving least squares estimates

µ̂ = y α̂i = yi − y β̂ j = yj − y

A very important assumption is that the two effects under consideration are independent so that the effect
of A does not change with the level of B under consideration. If this was not the case then the sum of
squares attributable to A would be different for each B. This assumption means that if a one way analysis
has already been performed for A, then the sum of squares for it does not change. What the two way
analysis does, therefore, is take some of the error and attribute it to another effect.

A one-way analysis may be readily extended to a two way one since the between groups sum of squares
already identified remains the same—this is a direct result of the additivity assumption. It can be shown
that

a

∑
i=1

b

∑
j=1

(
εij

)2
= b

a

∑
i=1

(yi − y)2 + a
b

∑
j=1

(
yj − y

)2
+

a

∑
i=1

b

∑
j=1

(
yij − yi − yj + y

)2
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If in each group there are r data, then this formula becomes

a

∑
i=1

b

∑
j=1

r

∑
k=1

(
εijk

)2
= br

a

∑
i=1

(yi − y)2 + ar
b

∑
j=1

(
yj − y

)2
+

a

∑
i=1

b

∑
j=1

r

∑
k=1

(
yijk − yi − yj + y

)2

It is clear to see that this is in the form of sums of squares for the A effect, the B effect, and the residual error.
A two-way analysis of variance is summarised in Table 3

Source D.F. Sum Of Squares Mean Square F Statistic

Effect A a− 1 ∑a
i=1 b (yi − y)2 S2

A
S2

A
S2

E

Effect B b− 1 ∑b
j=1 a

(
yj − y

)2
S2

B
S2

B
S2

E

Error (a− 1)(b− 1) ∑a
i=1 ∑b

j=1

(
yij − yi − yj + y

)2
S2

E

Total ab− 1 ∑a
i=1 ∑b

j=1
(
yij − y

)2

Table 3: Table for two-way analysis of variance

(18.2.2) Straight Line Regression

Model 19 For paired data (xi, yi) for 1 6 i 6 n there exists a relationship between the paired values modeled by

yi = α + βxi + εi

where ε1, ε2, . . . , εn are independent random variables each with expected value 0 and variance σ2.

It is usually assumed that the εis are Normally distributed so that yi | xi ∼ N
(
α + βxi, σ2). An estimate for

α and β, α̂ and β̂, may be found by a maximum likelihood estimate as follows.

Estimating α And β.

The quantity ε̂ = yi − α̂− β̂xi is called the ith residual, and α̂ and β̂ must be found so that the deviation of

the data from the line described by the model is minimal. The residual sum of squares given by
n

∑
i=1

ε2
i which

needs to be minimised.

RSS =
n

∑
i=1

(yi − α− βxi)
2

∂RSS
∂α

= −2
n

∑
i=1

(yi − α− βxi) = −2(ny− nα− nβx) (20)

∂RSS
∂β

= −2
n

∑
i=1

xi (yi − α− βxi) (21)
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From (20) it is evident that
∂RSS

∂α
= 0 by putting α̂ = y− β̂x. Substituting this into (21) gives

∂RSS
∂β

= −2
n

∑
i=1

xi
(
yi −

(
y− β̂x

)
− β̂xi

)
0 = −2

n

∑
i=1

xiyi + 2y
n

∑
i=1

xi − 2β̂x
n

∑
i=1

xi + 2β̂
n

∑
i=1

x2
i

= −
n

∑
i=1

xiyi + nxy + β̂

(
−nx2 +

n

∑
i=1

x2
i

)

β̂ =
∑n

i=1 xiyi − nxy

∑n
i=1 x2

i − nx2

At this point it is convenient to introduce a notation convention.

• Sums of squares may be expressed in the form Sxy where,

– Sxx = ∑ x2
i .

– Sxy = ∑ xiyi.

– Syy = ∑ y2
i .

• Corrected sums of squares may be expressed in the form Cxy where,

– Cxx = ∑ (xi − x)2.

– Cxy = ∑ (xi − x)(yi − y).

– Cyy = ∑ (yi − y)2.

The estimate for β can be represented in the alternative forms

β̂ =
∑n

i=1 xiyi − nxy

∑n
i=1 x2

i − nx2 =
∑n

i=1 (xi − x)(yi − y)
∑n

i=1 (xi − x)2 =
Cxy

Cxx
=

∑n
i=1 (xi − x)yi

∑n
i=1 (xi − x)2

Note that the last expression is allowed since

n

∑
i=1

(− xiy + xy) = −nxy + nxy = 0

Sampling Distributions For The Estimators

Having produced estimators, it is of interest as to how they behave—their sampling distributions.
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β̂ =
∑n

i=1 (xi − x)yi

∑n
i=1 (xi − x)2

=
n

∑
i=1

aiyi where ai =
xi − x
Cxx

E β̂ =
n

∑
i=1

ai E yi

=
n

∑
i=1

ai(α + βxi)

=
1

Cxx

(
α

n

∑
i=1

(xi − x) + β
n

∑
i=1

xi(xi − x)

)

=
1

Cxx
(0 + βCxx)

= β

So β̂ is an unbiased estimator. Similarly

var β̂ =
n

∑
i=1

a2
i var yi ai =

xi − x
Cxx

= σ2
n

∑
i=1

a2
i

The variance of yi is σ2 which comes from the εis since yi = α + βxi + εi

=
σ2 ∑n

i=1 (xi − x)2

C2
xx

=
σ2

Cxx

So the mean and variance of the estimator β̂ have been found. Note that this is the variance of the estimator,
not an estimate for variance: It is the mean square error (MSE) as discussed in Chapter ??.

From the model, yi | xi ∼ N
(
α + βxi, σ2) and since

β̂ =
∑n

i=1 (xi − x)yi

∑n
i=1 (xi − x)2

it can be seen that β̂ is a sum of independent Normal distributions and so itself has the Normal distribution

β̂ ∼ N
(

β,
σ2

Cxx

)
. A similar process can now be done for α̂, but note that

yi = α + βxi ⇒ y = α + βx
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Now, from the maximal likelihood estimation process above,

α̂ = y− β̂x

E α̂ = y−E
(

β̂x
)

= y− x E β̂

= y− βx

= α

Hence α̂ is also an unbiased estimator. For the variance,

var α̂ = var
(
y− β̂x

)
= var

(
1
n

n

∑
i=1

yi

)
+ var

(
β̂x
)

=
1

n2 (nσ2) + x2 σ2x2

Cxx

= σ2

(
1
n

+
x2

Cxx

)

It is observed that α̂ is a linear combination of Normal distributions, and so α̂ ∼ N
(

α, σ2
(

1
n + x2

Cxx

))
.

The Normal distribution of α̂ and β̂ is actually conditional on the εis being Normally distributed, which in
this model they are. Furthermore β̂ and y are independent random variables.

Estimating The Variance

Estimating the variance is really a question of estimating the εis, since they are the variance. Having used
the data—the xis and the yis—to generate estimates for α and β it is now possible to work out what the
model thinks the yis should be. It is usual to think of the xis as being fixed and the yis depending on them.
Hence

ŷi
def= α̂ + β̂xi

Clearly there will be a discrepancy between what the yis are, and what the model says they are supposed to
be. This amount is called the residual,

ε̂i
def= yi − α̂− β̂xi = yi − ŷi

The variance is then estimated by

σ̂2 =
∑n

i=1 ε̂2

n− 2
=

1
n− 2

n

∑
i=1

(yi − ŷi)
2

The term in the denominator is plausible since two parameters are being estimated. If the εis are Normally

distributed then
n− 2

σ2 σ̂2 ∼ χ2
n−2.

Since the variance estimate has a χ2 distribution and the estimators α̂ and β̂ are Normally distributed, a t
test can be constructed to test whether particular values of α and β are consistent with the data. Recall that
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a T statistic is of the form
N (0, 1)√

χ2
n

n

. These will be calculated in due course, but first of all note

Cxx + nx2 =
n

∑
i=1

(xi − x)2 + nx2

=
n

∑
i=1

x2
i − 2x

n

∑
i=1

xi +
n

∑
i=1

x2 + nx2

=
n

∑
i=1

x2
i (22)

Using equation (22) to simplify the expression for the statistic for α,

β̂−β√
σ2

Cxx√
σ̂2

σ2

∼ tn−2

α̂−α

σ
√

1
n + x2

Cxx√
x̂2

σ2

∼ tn−2

(
β̂− β

)√
Cxx

σ̂
∼ tn−2

(α̂− α)
σ̂

√
nCxx

∑n
i=1 x2

i
∼ tn−2

Hence the usual t tests can be performed to verify suspected values of α and β. In particular it is possible to
test for zero slope, although equivalently an F test could be used on the ratio of mean squares as found by
the analysis of variance.

Analysis Of Variance

As well as significance tests, the next part of the repertoire of statistical techniques is an analysis of variance.
In this case the variance can be attributed to variability accounted for by the model—the regression sum of
squares—and the residual sum of squares. Now,

n

∑
i=1

(yi − y)2 =
n

∑
i=1

(
ŷi + ε̂i − α̂− β̂x

)2

=
n

∑
i=1

(
α̂ + β̂xi + ε̂i − α̂− β̂x

)2

=
n

∑
i=1

(
β̂xi + ε̂i − β̂x

)2

= β̂2
n

∑
i=1

(xi − x)2 +
n

∑
i=1

ε̂2 + 2β̂
n

∑
i=1

(xi − x)ε̂i

= β̂2
n

∑
i=1

(xi − x)2 +
n

∑
i=1

ε̂2

which is the required result. The total sum of squares has been written as a ‘between groups’ and ‘within
groups’ sum of squares.

(18.2.3) The General Linear Model

First of all note that the General Linear Model should not be confused with the Generalised Linear Model,
which is something rather different. Recall that in the analysis of variance it was possible to attribute error in
the data to one or two parameters. The General Linear Model provides a way to consider many parameters,
as well as fitting a straight line or indeed a hyperplane. The General Linear Model is therefore of great
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interest.

Model 23 (The General Linear Model) Let the observed data form an n× 1 column vector y, let ` be a p× 1 column
vector of parameters (p < n), and let ” be an n× 1 column vector or errors. The data may then me modeled by the
equation

y = X` + ”

where X is an n× p matrix called the design matrix.

The design matrix may consist of numbers, for example in the case of the k sample problem, as well as
xis when fitting a straight line or hyperplane. It is assumed that X is of full rank (namely p) so that it has
linearly independent columns. If this is not so then it is often possible to reparameterise the model and so
solve this problem. Since XT X is a p× p matrix, X being of full rank means that XT X is non-singular and
so its inverse exists. As usual, each element of ” has εi ∼ N

(
0, σ2).

Estimating The Unknown Parameters

The first job with any particular application of the General Linear Model is to estimate the unknown param-
eters. Since ” = y− X`, the residual sum of squares is given by

R(ˆ̀) =
n

∑
i=1

ε2
i (ˆ̀) = (y− X`)T(y− X`) (24)

The estimate of the parameters, ˆ̀, is now chosen to minimise this error.

Theorem 25 Suppose that `0 satisfies the equation

XT X`0 = XTy

then R(ˆ̀) > R(`0) for all ˆ̀.

Proof. From equation (24),

R(ˆ̀)− R(`0) = (y− Xˆ̀)T(y− Xˆ̀)− (y− X`0)T(y− X`0)

=
(

yyT − ˆ̀T XTy− yT Xˆ̀ + ˆ̀T XT Xˆ̀
)
−
(

yyT − `T
0 XTy− yT X`0 + `T

0 XT X`0

)

But `T XTy =
(

yT X`
)T

= yT X` since it is a scalar. Hence

=
(

yyT − 2ˆ̀T XTy + ˆ̀T XT Xˆ̀
)
−
(

yyT − 2`T
0 XTy + `T

0 XT X`0

)
=
(

yyT − 2ˆ̀T XT X`0 + ˆ̀T XT Xˆ̀
)
−
(

yyT − 2`T
0 XT X`0 + `T

0 XT X`0

)
by hypothesis

= ˆ̀T XT Xˆ̀− 2ˆ̀T XT X`0 + `T
0 XT X`0
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But ˆ̀T XT X`0 is a scalar, and so is equal to its transpose. Hence

= ˆ̀T XT Xˆ̀− ˆ̀T XT X`0 − `T
0 XT Xˆ̀ + `T

0 XT X`0

= (ˆ̀T − `T
0 )XT X(ˆ̀− `0)

=
(
X
(ˆ̀− `0

))T (X (ˆ̀− `0
))

> 0

= 0 ⇔ ˆ̀ = `0

Hence the lemma has been shown. �

What this means is that the least squares estimate for ` satisfies XT Xˆ̀ = XTy and since XT X is non-singular
this can be solved to give ˆ̀ = (XT X)−1XTy. This estimator is readily seen as being unbiased since

E ˆ̀ = E
(

(XT X)−1XTy
)

= (XT X)−1XT E y = (XT X)−1XT X` = `

Furthermore the variance of the estimator can be found in the following way.

var θ̂i = var
((

XT X
)−1

XT
)

yi

= var
n

∑
j=1

((
XT X

)−1
XT
)

ij
yi

=
n

∑
j=1

((
XT X

)−1
XT
)2

ij
var yi

Now, ∑j (A)2
ij = ∑j (A)ij(A)ij = (AAT)ii. Hence

=

((
XT X

)−1
XT
((

XT X
)−1

XT
)T
)

ii

var yi

=
((

XT X
)−1

)
ii

σ2 (26)

This result can be used to perform t test to assess the ability of individual parameters to explain variability
in the data. In a similar way to fitting a straight line, the fitted values and residual errors are defined as
follows.

Definition 27 Where H = X(XT X)−1XT , which is called the hat matrix,

1. ŷ def= Hy.

2. ”̂ = y− ŷ = (I − H)y.

Theorem 28 The hat matrix H has the following properties.

1. HT = H = H2 so H is symmetric and idempotent.

2. (I − H)T = (I − H) = (I − H)2.

3. HX = X.

4. tr H = p.

Proof. Taking each part in turn,
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1. From the definition of the hat matrix,

HT =
(

X(XT X)−1XT
)T

= XTT
(XT X)−1T

XT = H

and also
H2 = X(XT X)−1XT X(XT X)−1XT = H

2. Follows from 1.

3. Clearly
HX = X(XT X)−1XT X = X

4. Since tr (AB) = tr (BA),

tr
(

X(XT X)−1XT
)

= tr
(

(XT X)−1XT X
)

= tr I = p �

Estimating σ2

The obvious way to partition the total variability experienced is into that which can be accounted for by the
model, and that which cannot. Where

ŷ = Hy and ”̂ = y− ŷ

observe that

n

∑
i=1

ŷ2
i = ŷT ŷ = yT HT Hy = yT Hy

and
n

∑
i=1

ε̂2
i = ”̂T ”̂ = yT(I − H)T(I − H)y = yT(I − H)y

and so
n

∑
i=1

ŷ2
i +

n

∑
i=1

ε̂2
i = yT Hy + yT(I − H)y =

n

∑
i=1

y2
i = yTy

Hence the important result
n

∑
i=1

y2
i =

n

∑
i=1

ŷ2
i +

n

∑
i=1

ε̂2
i . This calculation is the basis of the analysis of variance

which follows in due course, however, it does not have the usual interpretation of ‘variabilities’—∑n
i=1 y2

i is
simply the sum of squares of the ‘dependent’ data. Compare the form to the equation ”̂ = y− ŷ.

In the usual way, the variance estimate is formed from the sum of squares of the data values about their
expected value, ŷ. The estimator is therefore

σ̂2 =
1

n− p

n

∑
i=1

ε̂2
i =

”̂T ”̂
n− p

(29)

This can be shown to be unbiased. First of all note the result

”̂T ”̂ = yT(I − H)T(I − H)y

= (X` + ”)T(I − H)(X` + ”)

= ”T(I − H)” + (X`)T(I − H)(X`)

= ”T(I − H)”`T XT X`− `T XT HX`

= ”T(I − H)”
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Now, since ”̂T ”̂ is a scalar (or 1× 1 matrix), it is equal to its trace. Hence

E
(

”̂T ”̂
)

= E tr
((

”̂T ”̂
))

= E
(

tr
(

”T(I − H)”
))

= E
(

tr
(

(I − H)””T
))

= tr
(

(I − H) E
(

””T
))

But ””T is an n× n matrix, with ij entry εiε j. The expected value of a matrix is the matrix of expected values,
and by definition E εi = 0 and since the εis are independent, clearly the off diagonal entries in the matrix of
expected values will all be 0. However, E ε2

i = var εi − (E εi)
2 = σ2. Continuing,

E
(

”̂T ”̂
)

= tr
(

(I − H)σ2 I
)

= σ2 (tr I − tr H)

= σ2(n− p)

Hence it is clear that (29) is an unbiased estimator of σ2.

Analysis Of Variance

After fitting a model, the elements of the vector ”̂ represent the remaining discrepancy between the model
and the actual data—a residual error. Now, unlike the k sample problem the data here is supposed to vary.
The total variability of the data is therefore the data itself. The equation y = X` + ” means that the data has
some in-built variability, as well as the usual sampling error. Since a constant is also part of the model, it is
expected that yi = 0 ∀i. The partition of the total sum of squares into the model sum of squares and residual
error is therefore

n

∑
i=1

y2
i =

n

∑
i=1

ŷ2
i +

n

∑
i=1

ε̂2
i or equivalently yTy = ŷT ŷ + ”̂T ”̂

Now,

ŷT ŷ = (Hy)T(Hy)

=
(

`T XT + ”T
)

H (X` + ”)

= (X`)T X` + ”T H” + 2”T X`

Inkeeping with the view that the data should all be zero, the null hypothesis ` = 0 is under test, and if
true this gives ŷT ŷ = ”T H” which is a scalar. Now, each yi has a Normal distribution, and is a linear
function of p parameters; it follows therefore that each parameter is Normally distributed, and that the sum
of squares ŷT ŷ = ”T H” is therefore a sum of p squared Normal distributions. Hence ŷT ŷ ∼ σ2χ2

p is the null
distribution. This partition of the sum of squares is called the Model sum of squares, S2

M. Observe that

E S2
M = (X`)T(X`) + E

(
”T H”

)
+ 2 E

(
”T X`

)
= (X`)T(X`) + E

(
”T H”

)
+ 2 E

(
”T(y− ”)

)
= (X`)T(X`) + E

(
”T H”

)
+ 2 E

(
”Ty

)
− 2 E

(
”T”

)
= (X`)T(X`) + E

(
”T H”

)
by independence, using E ” = 0

= (E y)T (E y) + pσ2 since tr H = p.
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Source D.F. S.S. Mean Square Expected Mean Square

Fitting the model p ŷTŷ ŷT ŷ
p

(X`)T(X`)
p + σ2

Residual n− p ”̂T ”̂ ”̂T ”̂
p σ2

Total n yTy

Table 4: Analysis Of Variance For The General Linear Model

S2
M for M1 S2

R for M1

S2
M for M2 S2

R for M2

Extra S.S.

Figure 3: Diagrammatic representation of the extra sum of squares.

The information deduced above is summarised in Table 18.2.3.

The Extra Sum Of Squares Principle

It is all very well fitting a model, but what if it is inadequate? Or what if it is too elaborate, and a simpler
model would do? Suppose that a model M1 is fitted, and that it is a special case of a more general model
M2. Clearly fitting M2 will cause the residual sum of squares to decrease, and the amount by which it does
so is the ‘extra’ sum of squares. This is illustrated in Figure 18.2.3.

Theoretically, the extra sum of squares can be represented in an Analysis Of Variance table. First of all, since
“M1 ⊂ M2”,

Model 30 A model can be augmented by the introduction of new parameters.

M1 : y = X` + ”

M2 : y = X` + X∗`∗ + ”

In matrix form, M2 may be expressed as

y =
(

X X∗
)( `

`∗

)
+ ”

By considering each of the models separately, the sum of squares can now be decomposed as one of

yTy = ŷT
1 ŷ1 +

(
”̂T

1 ”̂1 − ”̂T
2 ”̂2

)
+ ”̂T

2 ”̂2 (31)

and yTy = ŷT
1 ŷ1 +

(
ŷT

2 ŷ2 − ŷT
1 ŷ1

)
+ ”̂T

2 ”̂2 (32)

In both cases the quantity in the brackets is the extra sum of squares. Table 18.2.3 shows how the resulting
Analysis Of Variance is modified: the top part of the table shown the breakdown of M2.

Notice that S2
M1

= S2
M2

+ ESS. The appropriate F test ratio is therefore ESS
S2

M2

. It is therefore usual to abbrevi-

ate the Analysis Of Variance table, as is shown in Table 18.2.3
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Source D.F. Sum Of Squares

M1 p1 ŷT
1 ŷ1

M2 adjusted for M1, the E.S.S. p2 − p1 ŷT
2 ŷ2 − ŷT

1 ŷ1
M2 p2 ŷT

2 ŷ2

Residual (from M2) n− p2 ”̂T
2 ”̂2

Total n yTy

Table 5: Analysis Of Variance showing the extra sum of squares.
This analysis of variance uses equation (31); the sum of the M1 sum of squares and the extra sum
of squares is the M2 sum of squares.

Source D.F. Sum Of Squares
Extra Sum Of Squares p2 − p1 ŷT

2 ŷ2 − ŷT
1 ŷ1

M2 Residual n− p2 ”̂T
2 ”̂2

Adjusted Total = M1 Residual n− p1 yTy− ŷT
1 ŷ1

Table 6: Adjusted Analysis Of Variance showing the extra sum of squares.
This analysis of variance uses equation (32). The significance of the extra sum of squares can be
tested using the F statistic arrising from the main part of the table.

Application To Linear Regression

For the general model take

y = X

(
α

β

)
+ ”

and the specific case to be β = 0.

Clearly, under M1 ˆalpha = y and hence the model sum of squares is

n

∑
i=1

ŷ2
i =

n

∑
i=1

y because ŷ = y ∀i

= ny2

Under M2, β̂ = Cxy
Cxx

and α̂ = y− β̂x. Hence,

n

∑
i=1

ŷ2
i =

n

∑
i=1

(
y− β̂x + β̂xi

)2

=
n

∑
i=1

y2 + 2yβ̂(x− xi) + β̂2(x− xi)
2

= ny2 + β̂2Cxx

Hence the complete analysis of variance table can be deduced and is as shown in Table 18.2.3

Note that the extra sum of squares effectively is the regression sum of squares.

Application To The k Sample Problem

Consider the models

M1 : yij = µ + εij M2 : yij = µ + θi + εij = µi + εij
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Source D.F. Sum Of Squares

M1 1 ny2

Extra Sum Of Squares 1 β̂Cxx
M2 2 ny2 + β̂Cxx

Residual n− 2 Find by subtraction

Total n
n

∑
i=1

y2
i

Table 7: Complete Analysis Of Variance For Linear Regression Models

Clearly for M1, µ̂ = y. For M2 however, µ̂i = yi.

Now, for M1
k

∑
i=1

ni

∑
j=1

ŷ2
ij =

k

∑
i=1

ni

∑
j=1

y = Ny2

and for M2,
k

∑
i=1

ni

∑
j=1

ŷ2
ij =

k

∑
i=1

ni

∑
j=1

y2
i =

k

∑
i=1

niy2
i

The extra sum of squares is therefore

k

∑
i=1

niy2
i − Ny2 =

k

∑
i=1

ni(yi − y)2

which is the between groups sum of squares. The complete analysis of variance is given in Table 18.2.3.

Source D.F. Sum Of Squares

M1 1 ∑k
i=1 ∑ni

j=1 y
Extra Sum Of Squares k− 1 ∑k

i=1 ∑ni
j=1 (y− yi)

2

M2 k ∑k
i=1 ∑ni

j=1 yi

Residual N − k ∑k
i=1 ∑ni

j=1 (yij − yi)
2

Total N ∑k
i=1 ∑ni

j=1 (yij − y)2

Table 8: Complete analysis of variance for the k sample problem.

The abbreviated analysis of variance table produces the usual k sample problem analysis of variance.

k Group Regression

A hybrid between linear regression and the k sample problem is k group regression. Each xi has associated
with it many rather than just one y value, so

M1 : yij = α + βxi + εij M2 : yij = µi + εij

M2 has k parameters whereas M1 has only 2, this is because M1 presumes that there is a (linear) relationship
between the µis and so eliminates these parameters. Hence the required setup exists for an application of
the extra sum of squares principle. If the extra sum of squares is not significant, then M1 is sufficient to
describe accurately the data, so the relationship is linear.
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Source D.F. Sum Of Squares
x1 1 Sequential sum of squares 1, a
x2 1 Sequential sum of squares 2, b
x3 1 Sequential sum of squares 3, c
x4 1 Sequential sum of squares 4, d

Regression 3 a + b + c + d
Error
Total

Table 9: Decomposition of regression sum of squares into sequential sum of squares.

Multiple Regression

In linear regression the data yi are accounted for by a single explanatory variable x. This is now extended
to many explanatory variables x1, x2, . . . , xk so that

yi = α + β1xi1 + β2xi2 + · · ·+ βkxik + εi

This model is a local approximation to the hyperplane y = f (x) + ”, and can be formulated as a general
linear model with design matrix

X =


1 x11 x12 . . . x1k

1 x21 x22 . . . x2k
...

...
...

. . .
...

1 xn1 xn2 . . . xnk


By letting say xr = xr

1 etc. it is possible to test for polynomial relationships.

Having fitted the model, the F test will test the hypothesis

H0 : β1 = β2 = · · · = βk = 0

Statistical computer software may often quote “r2”, which is the percentage of the total sum of squares that
is accounted for by the model.

The more variables in the model, the more of the variability can be explained, however, to include many
variables is clearly undesirable. It is required to find out the minimum number of explanatory variables
required in order to effectively describe the data. When the estimates of the βs are calculated and their
variances found, a t test can be used to test the hypothesis β j = 0 regardless of the other βs. This is a good
way to see if some of the βs can be dropped, but there is a problem with this: Only one β can be removed at
once as its partition of the sum of squares will need to be re-distributed and so once not-significant βs may
well become significant.

It would be possible to try eliminating a particular β and then re-test, but there is a better way. A simple
model with only one explanatory variable can be used initially, then more explanatory variables added in
one by one. Each time an explanatory variable is added in there will be an extra sum of squares—these are
the sequential sums of squares. In this case the order in which the explanatory variables are introduced will
make a difference to the sequential sums of squares.

Further F tests can be performed by considering the sum of some of the sums of squares. For example take
a situation as shown in Table 18.2.3, then the influence of x3 and x4 can be tested using an F test on c+d

Error S.S. .
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(18.3) Dependent Random Variables

(18.3.1) Covariance & Correlation

Definition & Properties

Definition 33 Let X and Y be random variables with E X = µx, E Y = µy, var X = σ2
x , and var Y = σ2

y . The
covariance of X and Y is defined by

cov (X, Y) = E
(
(X− µx)

(
Y− µy

))
The correlation of X and Y is defined by

ρ(X, Y) =
cov (X, Y)

σxσy

Straight from the definition it is clear that

1. cov (X, Y) = E (XY)− µxµy, which can be shown by multiplying out the definition.

2. cov (X, Y) = cov (Y, X).

3. cov (X, c) = 0 where c is a constant.

4. cov (X, X) = var X.

A linearity property follows from the linearity of the expectation operator; bearing in mind that if E X = µx

then E (aX) = aµx,

cov (aX + bY, Z) = E (aX + bY− aµu − bµy)(Z− µz)

= E (aX− aµx)(Z− µz) + E (bY− bµy)(Z− µz)

= a cov (X, Z) + b cov (Y, Z)

Using this property together with cov (X, Y) = cov (Y, X) it can be shown that covariance is a bilinear form,
i.e.

cov

∑
i

aiXi, ∑
j

bjYj

 = ∑
i

∑
j

aibj cov
(

Xi, Yj

)
If X and Y are independent random variables, then E (XY) = ( E X)( E Y), from which it follows that
cov (X, Y) = 0. However, the converse is not true. The merit of covariance, therefore, is the ability to
deal with dependent random variables. In particular it should be noted that

var (aX + bY) = E (aX + bY− aµx − bµy)2

= E (aX− aµx)2 + E (bY− bµy)2 + 2 E (aX− µx)(bY− µy)

= a2 var X + b2 var Y + 2ab cov (X, Y)

and so var

(
∑

i
aiXi

)
= ∑

i
a2

i var Xi + 2 ∑
i<j

aiajXiXj

Theorem 34 For any random variables X and Y with non-zero variance,

−1 6 ρ(X, Y) 6 1

with equality if and only if Y = cX + d for constants c and d, and when this is the case, ρ = sgn c.
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Proof. Let α and β be constants, then

0 6 var (αX + βY) = α2 var X + β2 var Y + 2αβ cov (X, Y)

= α2σ2
x + β2σ2

y + 2αβσxσyρ

Each of the inequalities is shown separately. Since the relationship must hold for all α and β, they can be
chosen at will, hence

• Put α = 1
σx

and β = 1
σy

, which gives

0 6 1 + 1 + 2ρ ⇒ ρ > −1

• Put α = 1
σx

and β = −1
σy

, which gives

0 6 1 + 1− 2ρ ⇒ ρ 6 1

Now, if ρ = ±1,

ρ = ±1 ⇔ var (αX + βY) = α2σ2
x + β2σ2

y ± 2αβσ2
x σ2

y

now put α = 1
σx

and β = ∓1
σy

to give

⇒ var
(

X
σx
∓ Y

σy

)
= 1 + 1− 2 = 0

⇒ X
σx
∓ Y

σy
= d for some constant d

⇒ Y = ±
σy

σx
X + d1

Hence when ρ = ±1, Y = cX + d with ρ = sgn c. What now remains to be shown is the reverse implication.
Say Y = ±cX + d, so

cov (X, Y) = cov (X,±cX + d) = ±c cov (X, X) + cov (X, d) = ±c var X = cσ2
x

But since Y = ±cX + d, σ2
y = c2σ2

x so,

ρ =
cov (X, Y)

σxσy
=
±cσ2

x
|c|σ2

x
= ±1

Hence the result. �

Covariance Matrices

The study of many random variables at once is much simplified by exploiting matrix algebra—this has
already been seen with the General Linear model. Suppose that the (not necessarily independent) random
variables X1, X2, . . . Xn are the elements of an n× 1 vector X.

• The expected value of X is ¯ = E X where µi = E Xi.
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• The covariance matrix of X is the n× n matrix V with Vij = cov
(

Xi, Xj

)
. So

V =


σ2

1 ρ12σ1σ2 . . . ρ1nσ1σn

ρ21σ2σ1 σ2
2 . . . ρ2nσ2σn

...
...

. . .
...

ρn1σnσ1 ρn2σnσ2 . . . σ2
n


Observe that V is symmetric, and if the Xis are independent, then V will be diagonal.

Theorem 35 Suppose the random vector variable X has mean ¯ and covariance matrix V. Then

1. If a is a constant n× 1 vector and Y = aTX then E Y = aT¯ and var Y = aTVa.

2. If A is a constant m× n matrix then where W = AX, E W = A¯ and the covariance matrix of W is AVAT .

Proof. 1. For the mean,

E Y = E (aTX) = E
n

∑
i=1

aiXi

=
n

∑
i=1

ai E Xi

=
n

∑
i=1

aiµi

= aT¯

For the variance,

var Y = cov (Y, Y) = cov

 n

∑
i=1

aiXi,
n

∑
j=1

ajXj


=

n

∑
i=1

n

∑
j=1

aiaj cov
(

Xi, Xj

)
=

n

∑
i=1

n

∑
j=1

aiVijaj

= aTVa

2. For the mean,

E Wi = E
n

∑
j=1

AijWj =
n

∑
j=1

Aij E Wj = A¯

For the covariance matrix,

cov W = E
(

(W− A¯)(W− A¯)T
)

= E
(

(AX− A¯)(AX− A¯)T
)

= A E
(

(X− ¯)(X− ¯)T
)

AT

= AVAT �

Application To The General Linear Model

The General Linear model is of the form y = X` + ”, and clearly the covariance matrix of ” is E (””T) = σ2 I.
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The parameter ` is estimated by ˆ̀ =
(
XT X

)1− XTy, the covariance matrix of which is found using the second
part of Theorem 35. Firstly,

covy = E (y− ¯y)(y− ¯y)T but ¯y = E y = X`

= E ””T

= σ2 I

Now using Theorem 35,

covˆ̀ =
((

XT X
)−1

XT
)

σ2 I
((

XT X
)−1

XT
)T

= σ2
(

XT X
)−1

XT X
(

XT X
)−1

= σ2
(

XT X
)−1

This confirms the result on page 17.

Similarly the covariance matrix of ”̂ is

σ2(I − H)I(I − H)T = σ2(I − H)

from which it is evident that var εi = σ2(1− hii).

Application To Linear Regression

The linear model for regression is

y =


1 x1

1 x2
...

...
1 xn


(

α

β

)
+ ”

from which,

V = cov

(
α̂

β̂

)
=

σ2

nCxx

(
∑n

i=1 x2
i −∑n

i=1 xi

−∑n
i=1 xi n

)
From this it is evident that

var α̂ =
σ2 ∑n

i=1 x2
i

nCxx
var β̂ =

σ2

Cxx
cov

(
α̂, β̂
)

=
−σ2x
Cxx

This means that if x is located at the origin then there is no covariance between α̂ and β̂. This is because the
slope of the line effects the position of the intercept, unless the intercept is at the origin.
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