
Chapter 17

MSMXG4 Complex Variable Theory

(17.1) Complex Functions

(17.1.1) Complex Numbers

First of all it is convenient to review some of the basis properties of the complex numbers. A complex
number is an ordered pair of real numbers, written x + iy where x, y ∈ R and i =

√
−1. The set of complex

numbers is denoted as C. The usual properties of a field hold for the complex numbers, i behaves as would
be expected for an algebraic factor. When performing calculations it is of course useful to remember that
i2 = −1.

As an ordered pair, a complex number can have a graphical representation in a plane. Where z ∈ C such
that z = x + iy the Cartesian plane can be modified so that the x axis is the real axis and the y axis is the
imaginary axis. This is called the Argand diagram.

Definition 1 If zx + iy ∈ C then the absolute value (or modulus) of z, written ‖z‖, is the real number
√

x2 + y2.

Definition 2 If zx + iy ∈ C then z = x − iy is the complex conjugate of z.

From the definition of a complex conjugate the following can readily be shown.

Assertion 3 1. z1 + z2 = z1 + z2

2. zz = |z|2

3. |z1z2| = |z1| |z2|

4. z1z2 = z1z2

5.
∣∣∣∣ z1
z2

∣∣∣∣ =
|z1|
|z2|

6. |z1 + z2| 6 |z1|+ |z2|

7. Re(z) =
z + z

2
and similarly Im(z) =

z− z
2

Having represented complex numbers in the Cartesian plane, a logical next step is to express them in a polar
form. This is done in the obvious way giving x + iy = r( cos θ + i sin θ) where θ = tan−1 y

x
and r = ‖z‖.

However, θ is not unique, as it can be readily replaced by θ + 2kπ where k ∈ Z. The set of all possible values
of θ is called arg (z), and the following definition is therefore made.

Definition 4 The unique element of arg (z) which lies in the range (−π, π] is called the principal argument of z, and
is denoted as Arg (z).

The following identity should be noted.

1
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Assertion 5 arg (z1z2) = arg (z1) + arg (z2) = {θ1 + θ2 | θ1 ∈ arg (z1) , θ2 ∈ arg (z2)}

However, there is another form which makes calculations even easier.

Definition 6 (Exponential Form Of A Complex Number) eiθ = cos θ + i sin θ

It can be shown that
(

eiθ1

) (
eiθ2

)
= ei(θ1+θ2), but this must be done from the formulae for sin (a + b) and

cos (a + b) in order to avoid a circular argument.

Theorem 7 (DeMoivre’s Theorem)

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)

Proof. The easy way is to observe that
(

eiθ
)n

= einθ . Alternatively, use proof by induction. �

Sufficient theory is now available to solve the following kind of problem.

Example 8 Find the 3rd roots of the complex number 1− i.

Proof. Solution Seek z such that z3 = 1 − i. Now, |1 − i| =
√

12 + (− 1)2 =
√

2 and arg (1 − i) =

tan−1
(

1
−1

)
=
−π

4
, being careful to make sure that the value of θ is in the correct quadrant. Therefore,

z3 =
√

2 exp
(

i(
−π

4
+ 2kπ)

)
where k ∈ Z

z = 6
√

2 exp

(
i(−π

4 + 2k1π)
3

+ 2k2π

)
k1, k2∈ Z

So the principal arguments for the roots are
−π

12
,
−9π

12
,

7π

12
giving as the answers

z1 = 6
√

2e
−π
12 z2 = 6

√
2e

−3π
4 z3 = 6

√
2e

7π
12 �

(17.1.2) Complex Valued Functions Of A Complex Variable

Having gained experience with complex numbers, it is natural to extend to functions of these numbers. As
usual a function f : S → T has the properties

• ∀s ∈ S ∃!t ∈ T which is the image of s under the function.

• S is called the domain and T is called the range.

It is evident that any complex function must have an expression of the form

f (x + iy) = u(x, y) + iv(x, y)

where u : R×R → R

and v : R×R → R

Perhaps the most basic type of function is the polynomial, which has an interpretation in the complex sense,

Definition 9 Suppose that n > 0 and a0, a1, . . . , an ∈ C where an 6= 0. Then

P(z) = a0 + a1z + · · ·+ anzn
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is a polynomial of degree n.

Furthermore, if R(z) and S(z) are polynomials, then T(z) =
R(z)
S(z)

is a rational function, wherever it is defined.

Drawing a graph of a complex function is difficult, as it is a map from a plane to a plane. Translations
and rotations are easy to visualise, but for anything more complicated drawing a graph is near impossible.
Despite this handicap, it is possible to produce the usual results of analysis.

Definition 10 Let z0 be a complex number, and ε > 0 be a real number. The ε-neighbourhood of z0 is defined by the set

B(z0, ε) = {z | |z− z0| < ε}

So a complex number z is said to be in the neighbourhood of z0 if ∃ε > 0 such that z ∈ B(z0, ε).

Definition 11 Let S, T ⊆ C, let f be a function f : S → T, and suppose that z0 ∈ C.

lim
z→z0

f (z) = w0 (w0 ∈ T)

⇔ given ε > 0 ∃δ > 0 such that | f (z)− w0| < ε whenever 0 < |z− z0| < δ

⇔ f (z) ∈ B(w0, ε) whenever z ∈ (B(z0, δ) \ {z0}) ∩ S

The usual results for limits can now be proved.

Theorem 12 Suppose that f is a function, and lim
z→z0

f (z) exists, then it is unique.

Proof. Suppose the result is false, so that say

lim
z→z0

f (z) = w1 and lim
z→z0

f (z) = w2

where w1 6= w2. The situation is something like that shown in Figure 1.
By the definition of a limit,

∀ε > 0 ∃δ1 > 0 such that 0 < |z− z0| < δ1 ⇒ | f (z)− w1| < ε

And similarly,
∀ε > 0 ∃δ2 > 0 such that 0 < |z− z0| < δ2 ⇒ | f (z)− w2| < ε

Let γ = |w1 − w2| and consider ε <
γ

2
. Clearly

| f (z)− w1| <
γ

2

| f (z)− w2| <
γ

2
adding, | f (z)− w1|+ | f (z)− w2| < γ (13)

However,

|w1 − w2| = |w1 − f (z) + f (z)− w2|

6 | f (z)− w1|+ | f (z)− w2| by the triangle inequality

From equation (13) this gives
γ < | f (z)− w1|+ | f (z)− w2| < γ

This is clearly a contradiction, hence the theorem holds. �
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Figure 1: The limit of a function must be unique

Theorem 14 If z = x + iy and f (z) = u(x, y) + iv(x, y), then where z0 = x0 + iy0 and w0 = u0 + iv0,

lim
z→z0

= w0 ⇔ lim
(x,y)→(x0,y0)

u(x, y) = u0 and lim
(x,y)→(x0,y0)

v(x, y) = v0

The proof of this theorem is omitted, but it follows much the same form as an example of finding a limit.

Theorem 15 (The Algebra Of Limits) Suppose that f and g are functions with lim
z→z0

f (z) = φ and lim
z→z0

g(z) = ρ.

Then,

1. lim
z→z0

( f + g)(z) = φ + ρ

2. lim
z→z0

k f (z) = kφ k ∈ C

3. lim
z→z0

f (z)g(z) = φρ

4. lim
z→z0

f
g

(z) =
φ

ρ
ρ 6= 0

Proof.

1. By the definition of a limit,

∀ε > 0 ∃δ1 > 0 such that | f (z)− φ| < ε whenever 0 < |z− z0| < δ1

and similarly,

∀ε > 0 ∃δ2 > 0 such that |g(z)− ρ| < ε whenever 0 < |z− z0| < δ2

Hence taking δ 6 min (δ1, δ2),

| f (z)− φ| < ε

2
and |g(z)− ρ| < ε

2
for δ 6 min (δ1, δ2)

| f (z)− φ|+ |g(z)− ρ| < ε

| f (z) + g(z)− (φ + ρ)| < ε by the triangle inequality

and hence by the definition of a limit, the result holds.
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2. Again from the definition of a limit,

| f (z)− φ| < ε

|k| for some δ > 0 where 0 < |z− z0| < δ

|k| | f (z)− φ| < ε

|k f (z)− kφ| < ε

And so by the definition of a limit, the result holds.

3. From the definition of a limit,

| f (z)− φ| < ε where |z− z0| < δ1

|g(z)− ρ| < ε where |z− z0| < δ2

|g(z)− ρ|+ |ρ| < ε + |ρ|

|g(z)| < ε + |ρ| by the triangle inequality

now, | f (z)g(z)− φρ| = | f (z)g(z)− φg(z) + φg(z)− φρ|

6 |φ| |g(z)− ρ|+ |g(z)| | f (z)− φ|

< |φ|ε + ε (ε + |ρ|)

< ε1

since ε1 can be made arbitrarily small. Hence by the definition of a limit, the result holds.

4. As above,

| f (z)− φ| < ε where |z− z0| < δ1

| f (z)| < ε + |φ|

|g(z)− ρ| < ε where |z− z0| < δ2

|g(z)| < ε + |ρ|

now, ∣∣∣∣ f (z)
g(z)

− φ

ρ

∣∣∣∣ =
∣∣∣∣ f (z)

g(z)
− f (z)

ρ
+

f (z)
ρ

− φ

ρ

∣∣∣∣
=
∣∣∣∣ f (z)

(
1

g(z)
− 1

ρ

)
+

1
ρ

( f (x)− φ)
∣∣∣∣

<
| f (z)|
|g(z)||ρ| ε +

1
|ρ|

epsilon

< ε1

since ε1 can be made arbitrarily small. Hence by the definition of a limit, the result holds. �

An instant application of this theorem is to polynomial functions, which are composed of products and
sums. It also follows that if lim

z→z0
f (z) = w0 then lim

z→z0
| f (z)| = |w0|, which is shown using the triangle

inequality.
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(17.1.3) Infinity

Defining limits for finite points in the complex plane is all very well, however, in a plane ‘infinity’ is not
really defined. On the real line this is not a problem, the real line has order but a plane does not — changing
from a line to a plane introduces such problems.

An obvious way to re-define ‘infinity’ is to say that the modulus of the complex number increases without
bound. This idea is formulated rigorously in terms of the Riemann sphere.

Imagine the complex plane, and a sphere is ‘pushed through’ it at the origin, so that the central part of the
plane is deformed into a hemisphere — all these points already lie on the sphere. Above the surface of the
complex plane now protrudes a hemisphere, and any point in the remaining (flat) plane is now joined by a
straight line to the top of the sphere, and so this line will intersect the sphere at some point. As this point of
intersection approaches the top of the sphere, the complex number approaches ‘infinity’.

Note that distances between complex numbers in the complex plane are not preserved for their correspond-
ing points on the Riemann sphere. Since C does not contain any kind of ‘infinity’ — as indeed R does not
— the extended complex numbers are defined to be C ∪ {∞}. As would be expected, the following rules
hold for ‘infinity’.

a + ∞ = ∞ a−∞ = ∞ a.∞ = ∞
1
0

= ∞
a
∞

= 0

For any non-zero complex number a.

(17.2) Differential Calculus Of Complex Functions

(17.2.1) Continuity

A discussion of limits is clearly aimed towards differentiation, but before this the (obvious) definition of
continuity is made.

Definition 16 A function f (z) is continuous at a point z0 ∈ C if

• f (z0) is defined, and

• lim
z→z0

f (z) = f (z0)

A function is said to be continuous on a set S ⊆ C if it continuous at every point in S. Note by the algebra
of limits it is easily seen that polynomial functions are continuous.

In the same way that a real function is defined on a subset of R, a complex function may be defined on a
subset of C. However, the two dimensional nature of C makes the type of subset rather more complicated
than the simple open, closed, or half-open intervals of R.

Definition 17 Suppose that S ⊆ C and z ∈ S.

1. Then one of the following holds,

(a) there exists a neighbourhood of z which lies completely within S. In this case z is said to be in the interior
of S.

(b) there exists a neighbourhood of z which contains no points in S. In this case z is said to be in the exterior
of S.
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(c) neither of the above two conditions hold, so that any neighbourhood of z contains points in S and points
not in S. Such a z is said to be a boundary point of S.

2. The set of boundary points of S is called the boundary of S.

3. A subset S of C is open ⇔ ∀z ∈ S ∃δ > 0 such that B(z, δ) ⊆ S

4. S is open if every point in S is an interior point.

5. S is closed if it contains all its boundary points.

6. S is connected if any two points in S can be joined by a polygonal path lying wholly in S.

7. S is a domain if it is both open and connected.

8. S is simply connected if it contains no holes∗

9. a domain together with some (or all) of its boundary points is called a region.

It is now possible to make a more useful definition regarding the continuity of a function

Definition 18 A function defined on a region R is said to be continuous on R, provided that it is continuous at every
point in R.

The ideas of these different kinds of subsets of C makes meaningful the idea of bounding.

Definition 19 A region R is bounded if ∃r > 0 such that R ⊂ B(0, r).

And similarly for a function,

Definition 20 If a function f is defined on a region R, then f is bounded provided that

∃M > 0 ∀z ∈ R such that | f (z)| 6 M ∀z ∈ R

It is clearly seen that where f (x + iy) = u(x, y) + iv(x, y) is defined and is continuous on the closed bounded
region R, then

| f (z)| =
√

(u(x, y))2 + (v(x, y))2

is continuous and attains its bounds.

(17.2.2) Derivatives

In the usual way,

Definition 21 Let f be a function whose domain of definition contains the point z0. The derivative of f at z0 is defined
by the limit

f ′(z0) = lim
z→z0

f (z)− f (z0)
z− z0

If the limit exists, then its value is called the derivative of f at z0 and f is said to be differentiable at z0. Otherwise f
is not differentiable at z0.

As with real functions, if a complex function is differentiable then it is continuous. For the real case this is
proved in Chapter ?? Theorem ??.

∗This is a rather poor definition, although it is good enough for present purposes. A more rigorous definition considers
contracting cycles from any point in S.
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Theorem 22 Suppose that f (x + iy) = u(x, y) + iv(x, y) is differentiable at the point z0 = x0 + iy0. Then

f ′(z0) =
∂u
∂x

∣∣∣∣
(x0,y0)

+ i
∂v
∂x

∣∣∣∣
(x0,y0)

=
∂v
∂y

∣∣∣∣
(x0,y0)

− i
∂u
∂y

∣∣∣∣
(x0,y0)

This theorem reveals that in order for a complex function to be differentiable there must be a special rela-
tionship between its real and imaginary parts.

Proof. Because f is differentiable at z0, the limit can be taken through real values and through imaginary
values and the value of the limit must be the same i.e.

case 1: Approaching z0 through real values,

lim
∆z → 0
∆z ∈ R

f (z0 + ∆z)− f (z0)
∆z

= lim
∆x→0

f (z0 + ∆x)− f (z0)
∆x

= lim
∆x→0

u(x0 + ∆x, y0) + iv(x0 + ∆x, y)− u(x0, y0)− iv(x0, y0)
∆x

= lim
∆x→0

u(x0 + ∆x, y0)− u(x0, y0)
∆x

+
iv(x0 + ∆x, y0)− iv(x0, y0)

∆x

=
∂u
∂x

∣∣∣∣
(x0,y0)

+ i
∂v
∂x

∣∣∣∣
(x0,y0)

Hence the result.

case 2: Approaching through imaginary values,

lim
∆z → 0

∆ Re z ≡ 0

f (z0 + ∆z)− f (z0)
∆z

= lim
∆y→0

f (z0 + ∆y)− f (z0)
i∆y

= lim
∆y→0

u(x0, y0 + ∆y) + iv(x0, y + ∆y)− u(x0, y0)− iv(x0, y0)
i∆y

= lim
∆y→0

u(x0, y0 + ∆y)− u(x0, y0)
i∆y

+
iv(x0 + ∆x, y0)− iv(x0, y0)

i∆y

= lim
∆y→0

−iu(x0, y0 + ∆y) + iu(x0, y0)
∆y

+
v(x0 + ∆x, y0)− v(x0, y0)

∆y

= −i
∂u
∂y

∣∣∣∣
(x0,y0)

+
∂v
∂y

∣∣∣∣
(x0,y0)

Hence the result. �

Definition 23 If a complex function f is differentiable at a point z0 and at every point in an open neighbourhood of z0,
then f is analytic at z0.

In the obvious way, f is said to be analytic on a domain D if it is analytic at every point of D. Furthermore,
if f is analytic at all points of C then it is called entire.

If f is entire, then the partial derivatives calculated in Theorem 22 will exist everywhere. By equating real
and imaginary parts,

∂u
∂x

=
∂v
∂y

and
∂u
∂y

= − ∂v
∂x

(24)
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These are called the Cauchy-Riemann Equations. Conversely, if the Cauchy-Riemann equations hold at z0

then f is differentiable at z0 provided that the four partial derivatives are continuous, and u and v are con-
tinuous at z0. Hence a function can be shown to be entire by showing that the Cauchy-Riemann equations
hold for all C.

Theorem 25 Let f be an analytic function defined on a domain D. If f ′(z) = 0 then the function is a constant.

Proof. Since f is analytic the Cauchy-Riemann equations holds so,

f ′(z) =
∂u
∂x

+ i
∂v
∂x

= −i
∂u
∂x

+
∂v
∂y

= 0

Hence equating real and imaginary parts

∂u
∂x

=
∂v
∂y

= 0
∂v
∂x

=
∂u
∂y

= 0

Now,
∂u
∂x

=
∂u
∂y

= 0 shows that u takes constant values on horizontal and vertical lines.

Furthermore,
∂v
∂x

=
∂v
∂y

= 0 shows that v takes constant values on horizontal and vertical lines.

Hence f = u + v takes constant values on horizontal and vertical lines. Since the domain is connected, any
two points can be joined with horizontal and vertical lines, and hence f is constant. �

For a fuller proof, it would be necessary to show that the function is constant on diagonal lines so that any
two points of D can be joined with a polygonal line.

The algebra of limits shows the usual results for differentiation, and the usual rules for differentiation hold.
In particular,

1. the derivative of a constant function is zero.

2.
d
dz

(c f (z)) = c
d f
dz

c ∈ C.

3.
d
dz

(zn) = nzn−1.

4.
d
dz

( f (z) + g(z)) =
d f
dz

+
dg
dz

.

5.
d
dz

( f (z)g(z)) = f (z)
dg
dz

+ g(z)
d f
dz

i.e. the product rule.

6.
d
dz

(
f (z)
g(z)

)
=

g(z) d f
dz − f (z) dg

dz

( f (z))2 i.e. the quotient rule.

7.
d
dz

( f ◦ g(x)) = g′( f (z)) f ′(z). i.e. the chain rule.

(17.2.3) Harmonic Functions

Definition 26 Let u be a real valued function of two real variables x and y. u is a Harmonic function if its first and
second partial derivatives exist and are continuous, and obey the Laplace Equation,

∂2u
∂x2 +

∂2u
∂y2 = 0
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For an analytic function, from the Cauchy-Riemann equations,

∂u
∂x

=
∂v
∂y

so
∂2u
∂x2 =

∂2v
∂x∂y

=
∂2v

∂y∂x
by continuity

=
∂

∂y

(
∂v
∂x

)
=

∂

∂y

(
− ∂u

∂y

)
by the other Cauchy-Riemann equation

= − ∂2u
∂y2

hence
∂2u
∂x2 +

∂2u
∂y2 = 0

So if f is an analytic complex function — so the Cauchy-Riemann equations hold — then its real and imag-
inary parts are harmonic functions.

Definition 27 If two harmonic functions u and v obey the Cauchy-Riemann equations in a domain D, then where
f (x + iy) = u(x, y) + iv(x, y), v is the harmonic conjugate of u.

From the Cauchy-Riemann equations it is evident that if v is a harmonic conjugate of u, then −u is a har-
monic conjugate of v.

(17.2.4) Transcendental Functions

The exponential function is defined as ez = ex+iy and notice that this is equal to ex( cos y + i sin y).

d
dz

(ez) =
∂

∂x
ex cos y + i

∂

∂x
ex sin y by Theorem 22

= ex cos y + iex sin y

= ex+iy = ez

So as would be expected, the derivative of ez is ez.

Definition 28 The sine and cosine of a complex variable are defined as

sin z =
eiz − e−iz

2i
cos z =

eiz + e−iz

2

From these definitions expressions for the tangent, cotangent, secant, and cosecant can be found.

The logarithm is the inverse function of the exponential, but in the complex case this is problematic since ez

is not a bijection — ez = ez+2kπi where k ∈ Z.

Definition 29 The logarithm of a complex variable z is defined as

ln z = ln |z|+ i arg z

which is multivalued and so is not a function. The principal logarithm is defined as

Ln z = ln |z|+ i Arg z
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which is a function.

Notice that eLn z = eln |z|+i Arg z = |z|ei Arg z = z as would be expected. Since ln x is continuous for x > 0 and
Arg z is continuous for z /∈ R−, it follows that the complex logarithm is continuous on C \ {R−

0 }.

Theorem 30 Let U = C \ {R−
0 } then Ln z is analytic on U with derivative

1
z

.

Proof. From the definition of a derivative,

lim
z→z0

Ln z− Ln z0
z− z0

= lim
z→z0

Ln z− Ln z0

eLn z − eLn z0

= lim
w→w0

w− w0
ew − ew0

from putting w = Ln z and w0 = Ln z0. The subscript on the limit can be changed because the complex
logarithm is continuous i.e. Ln z → Ln z0 and hence w → w0 as z → z0. The continuity of the exponential is
also required.

= lim
w→w0

(
ew − ew0

w− w0

)−1

= (ew0 )−1 because ez is differentiable with derivative ez.

=
1
z0

which holds for any z0 ∈ U. �

It has been seen that the complex logarithm is not a proper function, and the principal logarithm was defined
in the obvious way. However, there are many more ways to make the complex logarithm into a function.

Definition 31 Suppose that U is a domain, and f : U → C is a continuous function with the property e f (z) = z ∀z ∈
U. Then f is called a branch of the logarithm in U.

Many possibilities for f are realised by making an appropriate restriction of the set arg z. Define

argα z = {arg z | arg z ∈ (α− 2π, α]}

so that
lnα z = ln |z|+ i argα z

Clearly this is a branch of the logarithm, but care must be taken in specifying on what domain. The set
argα z behaves rather like Arg z, where it necessary to exclude the negative real axis, R− — recall that
Arg z ∈ (−π, π]. In the case of argα z the acceptable range of values starts and ends at the half line θ = α.
Hence the domain U is the complex plane less this half line.

Logarithms are closely linked with expressions of the form az, in this case for some a ∈ C. The exponent is
defined as az = ez ln a and the principal exponent by az

p = ez Ln a.

(17.3) Integral Calculus Of Complex Functions

(17.3.1) Paths & Contours

A real integral is usually interpreted as the area under a line, or the volume under a surface — see Chapters
?? and ??. However, in the complex case no such interpretation is readily available.
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Definition 32 Where [a, b] ⊂ R is an interval on the real line, a function γ : [a, b] → C is a path.

A path may commonly be identified by its image rather than the function, which is the set Γ = {γ(t) | t ∈ [a, b]}.
It is possible that different functions produce the same image, so it is often more useful to speak of Γ than
γ. Note the following terminology.

• γ(a) is the initial point of γ.

• γ(b) is the terminal point of γ.

• Γ is simple if it “does not cross itself” i.e. @t1 ∈ [a, b] @t2 ∈ [a, b] such that γ(t1) = γ(t2).

• γ is closed if γ(a) = γ(b).

• γ is simple closed if it is both simple and closed.

• γ is smooth provided that γ′ exists and is continuous.

• γ is a contour if it is piecewise smooth†.

If one path ends where another begins, it seems obvious that they can be added together to produce one
long path. However, care must be taken in finding the domain of the new path.
Suppose that γ1 : [a, b] → C and γ2 : [c, d] → C are paths with γ1(b) = γ2(c). In defining γ1 + γ2 it is
required that the domain of γ2 is translated so that it begins at b. Therefore

γ1 + γ2 : [a, b + |c− d|] → C

t 7→

γ1(t) if t ∈ [a, b]

γ2(t + |c− d|) if t ∈ [b, b + |c− d|]

The orientation of a path can be reversed by defining γ∗ : [b, a] → C.

Typically, a path may be expressed in the form γ(t) = γu(t) + iγv(t) in which case the derivative is the
obvious γ′(t) = γ′u(t) + iγ′v(t).

(17.3.2) Path Integrals

A path integral is simply an integral taken along a path. By composing a path with a complex function a

mapping of the form R
γ−→ C

f−→ C is produced which is a function from R to C. Say F(t) : R → C with
F(t) = Fu(t) + iFv(t), then ∫ b

a
F dt =

∫ b

a
Fu(t) dt + i

∫ b

a
Fv(t) dt

Now, where z = γ(t),
dz
dt

= γ′(t). Bearing this in mind,

∫
γ

f (z) dz def=
∫ b

a
f (γ(t)) γ′(t) dt

Assertion 33 Where f is a continuous complex function and γ1 and γ2 are contours with the terminal point of γ1

coincidental with the initial point of γ2,

•
∫

γ1
f (z) dz = −

∫
γ∗1

f (z) dz.

•
∫

γ1+γ2
f (z) dz =

∫
γ1

f (z) dz +
∫

γ2
f (z) dz

†Piecewise smooth means that the path is a sum of smooth paths
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• Where c ∈ C,
∫

γ1
c f (z) d(z) = c

∫
γ1

f (z) dz.

• If g is another continuous function,
∫

γ1
f (z) + g(z) dz =

∫
γ1

f (z) dz +
∫

γ1
g(z) dz.

Theorem 34 (Jordan Curve Theorem) Suppose that Γ is a simple closed contour in C. Then Γ divides C into two
disjoint domains, one of which is bounded and the other of which is unbounded. They are denoted by Int Γ and Ext Γ

respectively.

Definition 35 Let f be a complex function that is continuous on a domain D. Suppose that F is an analytic function
with derivative f on D, then F is called an anti-derivative or primitive of f .

An anti-derivative behaves as it would be expected to, since

∫
γ

f (z) dz =
∫ b

a
f (γ(t))γ′(t) dt

=
∫ b

a

d
dt

F(γ(t)) dt

= [F(γ(t))]ba
= F(γ(b))− F(γ(a))

So given an anti-derivative to a function, its contour integral can be readily evaluated by putting the end-
points of the contour into the anti-derivative in this way. Furthermore, if the contour is closed then the
integral is zero.

The ML Result

The ML result is concerned with finding bounds for integrals.

Definition 36 Let γ : [a, b] → C be a contour. The length of γ is defined as

L(γ) =
∫ b

a

∣∣γ′(t)∣∣ dt

Lemma 37 Suppose that φ : [a, b] → C is continuous, then∣∣∣∣∫ b

a
φ(t) dt

∣∣∣∣ 6 ∫ b

a
|φ(t)| dt

Proof. Let
∫ b

a φ(t) dt = reiθ ,∣∣∣∣∫ b

a
φ(t) dt

∣∣∣∣ =
∣∣∣reiθ

∣∣∣ = |r| = r

r = e−iθ
∫ b

a
φ(t) dt =

∫ b

a
e−iθφ(t) dt

r =
∫ b

a
Re
(

e−iθφ(t)
)

dt + i
∫ b

a
Im
(

e−iθφ(t)
)

dt
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Equating real and imaginary parts, it is evident that
∫ b

a Im
(

e−iθφ(t)
)

dt = 0. Also, since Re (z) = x 6√
x2 + y2 = |z| this gives

r 6
∫ b

a

∣∣∣e−iθφ(t)
∣∣∣ dt

=
∫ b

a

∣∣∣e−iθ
∣∣∣ |φ(t)| dt

=
∫ b

a
|φ(t)| dt

Hence the result. �

Theorem 38 (The ML Result) Suppose that f is continuous on the domain D and γ is a contour of length L. If ∃M
such that | f (z)| 6 M for all z on Γ then

∣∣∣∫γ f (z) dz
∣∣∣ 6 ML.

Proof. Most of the work has already been done in Lemma 37,∣∣∣∣∫
γ

f (z) dz
∣∣∣∣ =

∣∣∣∣∫ b

a
f (γ(t))γ′(t) dt

∣∣∣∣
6
∫ b

a

∣∣ f (γ(t))γ′(t)
∣∣ dt by Lemma 37

=
∫ b

a
| f (γ(t))|

∣∣γ′(t)∣∣ dt

6 M
∫ b

a

∣∣γ′(t)∣∣ dt

= ML

Hence the result. �

Cauchy-Goursat Theorem

It was noted that the integral round a contour γ∗ has the opposite sign to that round γ. In order to make
the value of an integral well-defined it is conventional to traverse contours anticlockwise: The interior of a
contour is on the left if the contour is simple closed.

Theorem 39 (Cauchy-Goursat) Let f be a function that is analytic on a simply connected domain D. Then for all
simple closed contours in D,

∫
γ f (z) dz = 0.

This theorem is distinct from the result following Definition 35 in that it does not require the existence of
an anti-derivative. A subtle point is that the domain must be simply connected: The result does not hold

for
1
z

on C \ {0} since this domain has a ‘hole’ in it at the origin. However, C \ R+
0 would be a perfectly

acceptable domain.

Since any non-simple contour can be thought of as a number of different ‘loops’ i.e. simple closed contours,
it follows that if D is simply connected, f is analytic, and γ is any closed contour then

∫
γ f (z) dz = 0.

Suppose that γ1 and γ2 are contours in a simply connected domain D which share the initial point z1 and
share the terminal point z2. The contour γ = γ1 + γ∗2 is then simple and closed and so

∫
γ1+γ∗2

f (z) dz = 0.
From this it is readily deduced that

∫
γ1

f (z) dz =
∫

γ2
f (z) dz.

When drawing diagrams it is common to see very oddly shaped contours‡. It would be incredibly diffi-
cult to describe these mathematically, so instead methods are sought to evaluate integrals round simpler

‡none here because they’re difficult to create
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r

Γa Γ

0

Bε(0)

Γr

Figure 2: Contours around a ‘bad’ point

(preferable circular) contours.

Lemma 40 If γ is any simple closed contour which has z0 in its interior then
∫

γ
1

z−z0
dz = 2πi.

Proof. By Theorem 34 the interior of a contour is open, and so there exists ε > 0 such that Bε(z0) ⊂ Int γ.
Now consider 0 < r < ε and define γr(t) = z0 + reit for 0 6 t < 2π. Let Γa join Γ to Γr. The situation is
illustrated in Figure 2
The function f (z) = 1

z−z0
is analytic on the domain which is the interior of the curve

Γ0 = Γ + Γa − Γr − Γa

Hence ∫
Γ0

1
z− z0

dz = 0

0 =
∫

Γ

1
z

dz +
∫

Γa

1
z− z0

dz−
∫

Γr

1
z− z0

dz−
∫

Γa

1
z− z0

dz∫
Γ

1
z− z0

dz =
∫

Γr

1
z− z0

dz =
∫ 2π

0

1
reit ireit dt = 2πi (41)

Hence the integral round the complicated curve has the same value as the integral round the circle, which
is readily seen to be 2πi. �

The above result can be generalised to the function 1
z−z0

where z0 ∈ Int Γ.

Working along the same principle of summing round different contours, it is possible to extend Cauchy-
Goursat.

Theorem 42 (Cauchy-Goursat For Multiply Connected Domains) Suppose that Γ is simply closed contour in a sim-
ply connected domain D and that Γ1, Γ2, . . . , Γn are disjoint simple closed contours in Int Γ that aren’t nested. If f is
analytic on D \

⋃
j

Int Γj then

∫
Γ

f (z) dz =
n

∑
j=1

∫
Γj

f (z) dz

Cauchy’s Integral Theorems

Clearly complex integrals have some very desirable properties—they disappear a lot. Essentially what
Theorem 39 says is that integrals round closed curves need only be evaluated round discontinuities in the
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domain of the integrand: Anywhere else the integral vanishes. Cauchy’s integral formulae provide neat
ways to evaluate these ‘bad points’ very easily.

Theorem 43 (Cauchy’s Integral Formula) Suppose that D is a simply connected domain upon which a complex func-
tion f is analytic. Let γ be a closed contour in D and z0 ∈ Int γ. Then

f (z0) =
1

2πi

∫
γ

f (z)
z− z0

dz

Proof. First of all,

1
2πi

∫
γ

f (z)
z− z0

dz =
1

2πi

∫
γ

f (z) + f (z0)− f (z0)
z− z0

dz

=
1

2πi

∫
γ

f (z)− f (z0)
z− z0

dz +
1

2πi

∫
γ

f (z0)
z− z0

dz

=
1

2πi

∫
γ

f (z)− f (z0)
z− z0

dz +
f (z0)
2πi

∫
γ

1
z− z0

dz

=
1

2πi

∫
γ

f (z)− f (z0)
z− z0

dz + f (z0)

f (z0) =
1

2πi

∫
γ

f (z)
z− z0

dz− 1
2πi

∫
γ

f (z)− f (z0)
z− z0

dz

So it remains to show that 1
2πi
∫

γ
f (z)− f (z0)

z−z0
dz = 0. By the Jordan Curve Theorem, Theorem 34, B(z0, δ1) ⊂

Int γ and so for 0 < α < δ1 define the contour

γα : [0, 2π] → B(z0, δ1) by t 7→ z0 + αeit

so clearly Γα ⊂ Int γ. Since the integrand f (z)− f (z0)
z−z0

is analytic on D \ Int Γα, by Cauchy Goursat for multiply
connected domains, ∫

γ

f (z)− f (z0)
z− z0

dz =
∫

γα

f (z)− f (z0)
z− z0

dz

Hence it is required to show that

lim
α→0

∣∣∣∣∫
γα

f (z)− f (z0)
z− z0

dz
∣∣∣∣ = 0

For this the ML result is used, and clearly L = 2πα. To find M first of all note that

lim
z→z0

f (z)− f (z0)
z− z0

= f ′(z0)

which can be written since f is analytic. Hence by considering ε = 1 in the definition of a limit,

∃δ2 > 0 such that 0 < |z− z0| < δ2 ⇒
∣∣∣∣ f (z)− f (z0)

z− z0
− f ′(z0)

∣∣∣∣ < 1

However,∣∣∣∣ f (z)− f (z0)
z− z0

− f ′(z0) + f ′(z0)
∣∣∣∣ 6 ∣∣∣∣ f (z)− f (z0)

z− z0
− f ′(z0)

∣∣∣∣+ | f ′(z0)| by the triangle inequality

6 1 + | f ′(z0)|

Hence put M = 1 + | f ′(z0)| so that for δ < min (δ1, δ2)∣∣∣∣∫
γα

f (z)− f (z0)
z− z0

dz
∣∣∣∣ 6 (

1 + | f ′(z0)|
)

2πα
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Hence by the squeeze rule as α → 0 the required result is obtained. �

If a function has a number of bad points, then Cauchy-Goursat for multiply connected domains means that
it is only necessary to evaluate an integral round each bad point and then sum. Cauchy’s integral formula
can be extended, since differentiating with respect to z0 n times it is clear that

f (n)(z0) =
n!

2πi

∫
γ

f (z)
(z− z0)n+1 dz

Note that if a function is analytic on a simply connected domain, then derivatives of every order exist and
are analytic§. It has been seen that if a function is analytic then it integrates to zero round closed contours.
However, the converse is also true.

Theorem 44 (Morera’s Theorem) Suppose a function f is continuous on a simply connected domain D, and that∫
γ f (z) dz = 0 for all closed contours γ in D. Then f is analytic on D.

Proof. Proof of Morera’s Theorem is made by finding the anti-derivative of f , F. By showing that F is
analytic, it is then concluded that its derivative f is analytic.

Suppose that z1 and z2 are distinct points in D. Since
∫

γ f (ζ) dζ = 0 for all closed contours, it follows that
the integrals along any contour joining z1 and z2 always have the same value.

Let a be some fixed point in D, then for some point z define the integral along any contour from a to z to be

F(z) =
∫ z

a
f (ζ) dζ

Now, F(z) =
∫ z0

a f (ζ) dζ +
∫ z

z0
f (ζ) dζ. Hence

F(z)− F(z0)
z− z0

=
1

z− z0

∫ z

z0

f (ζ) dζ

So

F(z)− F(z0)
z− z0

− f (z0) =
1

z− z0

∫ z

z0

f (ζ) dζ − f (z0) dζ

=
1

z− z0

∫ z

z0

f (ζ)− f (z0) dζ

Now, since D is a domain, ∃δ1 > 0 such that B(z0, δ1) ⊂ D, and the line connecting z0 to z is in the ball
if 0 < |z − z0| < δ1. This provides a bounding length for use in the ML result. Since any contour can be
chosen the straight line is used.∣∣∣∣ F(z)− F(z0)

z− z0
− f (z0)

∣∣∣∣ =
∣∣∣∣ 1
z− z0

∫ z

z0

f (ζ)− f (z0) dζ

∣∣∣∣
6
|z− z0|
|z− z0|

M = M

What remains is to find M, the maximum value attained by | f (z)− f (z0)| on on the contour connecting z to
z0. However, by hypothesis f is continuous, and so from the definition of a limit,

∀ε > 0 ∃δ2 > 0 such that 0 < |ζ − z0| < δ2 ⇒ | f (ζ)− f (z0)| < ε

§This really should be presented ad proved as a proper theorem.
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Hence for δ < min (δ1, δ2) ∣∣∣∣ F(z)− F(z0)
z− z0

− f (z0)
∣∣∣∣ < ε

Hence
lim

z→z0

∣∣∣∣ F(z)− F(z0)
z− z0

− f (z0)
∣∣∣∣ = 0

Since z0 was chosen arbitrarily it follows that F is differentiable everywhere on C i.e. is analytic. Further-
more, the derivative of F is f , which, since it is the derivative of an analytic function must in turn be analytic.
Hence the result. �

(17.4) Properties & Uses Of Complex Functions

(17.4.1) Series Expansion Of Complex Functions

Sequences Of Functions

In a similar way to real analysis, sequences can be defined such as

{zn} =
2 + sin n

n

which is clearly convergent to zero. However, another parameter, z ∈ C, can be introduced. The conver-
gence of the sequence is then dependent upon what values the parameter takes. A new function f can then
be defined as f (z) = lim

n→∞
fn(z).

Definition 45 1. Let {z} be a sequence.

lim
n→∞

zn = w ⇔ ∀ε > 0 ∃N ∈ N such that |zn − w| < ε for n > N

2. For a sequence { fn(z)} which is convergent to f (z),

(a) If lim
n→∞

fn(z) = f (z) only for some z ∈ U ⊂ C, then { fn(z)} is said to be piecewise convergent. Note
that the convergence depends on z.

(b) If lim
n→∞

fn(z) = f (z) for all z ∈ C then { fn(z)} is uniformly convergent. Note that the convergence does
not depend on z.

Assertion 46 The following theorems are asserted without proof.

i. If a sequence { fn(z)} is uniformly convergent to f and each fn(z) is continuous, then f is continuous.

ii. Let fn : [a, b] → C for all n ∈ N. If the sequence of these functions is uniformly convergent, then

lim
n→∞

∫ b

a
fn(t) dt =

∫ b

a
f (t) dt

It follows that if Γ is a contour in some subset of C and { fn(z)} is uniformly convergent to f then

lim
n→∞

∫
Γ

fn(t) dt =
∫

Γ
f (t) dt

Furthermore, if each fn is analytic on the same domain, then f is analytic on that domain. (This is shown from
Cauchy-Goursat and Morera’s Theorem).

Consider
∞

∑
k=0

fk(z), then its convergence can be determined by considering the sequence of nth partial sums,

an(z) =
n

∑
k=0

fk(z). Note that
∞

∑
k=0

fk(z) is convergent whenever {an} is convergent, and they are convergent in
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rz0 γr1γr2

η

Figure 3: Contours in an annulus, used for proving Laurent’s Theorem.

the same way i.e. uniform or piecewise.

Theorem 47 (Weierstrass M Test) Let
∞

∑
k=0

Mk be a convergent series of positive terms then
∞

∑
k=0

fk(z) is uniformly

convergent on a region R provided that | fk(z)| < Mk for all z ∈ R.

Theorem 48 If
∞

∑
k=0

fk(z) is uniformly convergent to f (z) on a region R then

(i) If each fk is continuous, then so is f .

(ii) If each fk is analytic, then so is f and
d f
dz

=
∞

∑
k=0

d
dz

fk(z).

(iii) For any contour Γ in R,
∫

Γ
f (z) dz =

∞

∑
k=0

∫
Γ

fk(z) dz.

Recall that
∞

∑
n=−∞

an(z− z0)n is a power series about the point z0. If R = lim
n→∞

|an|
|an+1|

then R is the radius of

convergence i.e. the sum is convergent for |z− z0| < R.

Expansions Of A Complex Function

Theorem 49 (Laurent’s Theorem) Suppose that f is analytic on an annulus D centred at z0, R1 < |z − z0| < R2,
and let γr be a contour of radius r centered at z0 such that R1 < r < R2. Then for z ∈ Int D,

f (z) =
∞

∑
n=−∞

cn(z− z0)n where cn =
1

2πi

∫
γr

f (s)
(s− z0)n+1 ds

Proof. Suppose z ∈ Int D and choose r1, r2 such that R1 < r1 < |z− z0| < r2 < R2 and let γr1 and γr2 be the
corresponding contours centred at z0, as shown in Figure 13.

Now define the contour
Γ = γr2 + η − γr1 − η

By hypothesis f is analytic on Γ ∪ Int Γ, which is the region shown shaded in Figure 13. Hence Cauchy’s
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integral formula can be used to give

f (z) =
1

2πi

∫
Γ

f (s)
s− z

ds

=
1

2πi

(∫
γr1

f (s)
s− z

ds +
∫

η

f (s)
s− z

ds−
∫

γr2

f (s)
s− z

ds−
∫

η

f (s)
s− z

ds

)

=
1

2πi

(∫
γr1

f (s)
s− z

ds +
∫

γr2

f (s)
z− s

ds

)
(50)

Now,

1
s− z

=
1

(s− z0)− (z− z0)

=
1

s− z0

1
1− z−z0

s−z0

=
1

s− z0

∞

∑
n=0

(
z− z0
s− z0

)n
for

∣∣∣∣ z− z0
s− z0

∣∣∣∣ < 1

and similarly
1

z− s
=

1
z− z0

∞

∑
n=0

(
s− z0
z− z0

)n
for

∣∣∣∣ s− z0
z− z0

∣∣∣∣ < 1

Using these expansions to substitute into equation (50) gives

f (z) =
1

2πi

(∫
γr2

∞

∑
n=0

f (s)
s− z0

(
z− z0
s− z0

)n
ds +

∫
γr1

∞

∑
n=0

f (s)
z− z0

(
s− z0
z− z0

)n
ds

)

Now, the integral and the sum can only be ‘swapped round’ if the sum is uniformly convergent on the
region under consideration. Now, for the first summation, the integration is over γr2 so |s− z0| = r2.∣∣∣∣ f (s)

z− z0

(
s− z0
z− z0

)n∣∣∣∣ = | f (s)| |(z− z0)n|∣∣(s− z0)n+1
∣∣

6 M1
|(z− z0)n|

rn+1
2

Where M1 is the maximum value of f (s) along γr2 . Also, since z ∈ Int Γ it must be the case that |z− z0| < r2.

This produces a series
∞

∑
n=0

M1
|z− z0|n

rn+1
2

which consists of only positive terms and is convergent. Hence by

the Weierstrass M test the first summation is uniformly convergent on Γ ∪ Int Γ.

For the second summation, consider the mapping n 7→ −n. An application of precisely the same argument
shows that this is also uniformly convergent on Γ ∪ Int Γ and hence

f (z) =
1

2πi

(
∞

∑
n=0

∫
γr2

f (s)
(s− z0)n+1 (z− z0)n ds +

−1

∑
n=−∞

∫
γr1

f (s)
(s− z0)n+1 (z− z0)n ds

)

Now, consider r1 < r < r2, then by Cauchy-Goursat for multipally connected domains (wich is used
‘backwards’),

f (z) =
1

2πi

∞

∑
n=−∞

∫
γr

f (s)
(s− z0)n+1 (z− z0)n ds

=
∞

∑
−∞

cn(z− z0)n where cn =
1

2πi

∫
γr

f (s)
(s− z0)n+1 ds
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Hence the result. �

In practice not all of the terms need be present. Indeed, a Laurent series is rather like a Taylor series but
starting ‘further down’. This different start position is caused by having to take into account a bad point in
the domain and so creating an annulus. If there is no such bad point to cope with, a normal Taylor series
suffices as the power series expansion.

Theorem 51 (Taylor’s Theorem) Suppose that f is an analytic function on the domain B = B(z0, R), then for z ∈ B,

f (z) =
∞

∑
n=0

f (n)(z0)
n!

(z− z0)n

Proof. Evaluating at z0, the theorem clearly holds. Hence consider the annulus B0 = B \ {z0}, then applying
Laurent’s Theorem,

f (z) =
∞

∑
n=−∞

cn(z− z0)n where cn =
1

2πi

∫
γr

f (s)
(s− z0)n+1 ds

Now, considering the different possibilities for n,

• if n > 0 then cn =
f (n)(z0)

n!
by Cauchy’s integral formula for derivatives.

• if n = 0 then c0 = f (z0) by Cauchy’s integral formula.

• if n < 0 then
f (s)

(s− z0)n+1 = f (s)(s − z0)p where p > 0. On B, cn is now the integral of an analytic

function round a closed contour in a simply connected domain, and hence is zero.

Hence the result. �

It can be shown that the Laurent or Taylor expansion of a function is unique on any given annulus or
domain. This means that changing the subset of C upon which the expansion is considered may well
change the expansion itself. This is best illustrated by means of an example.

Example 52 Find all the Laurent expansions of the function f (z) =
1

z(z− 2)
centred at 0.

Proof. Solution There are two Laurent expansions of this function, on the annuli

D1 : 0 < |z| < 2 and D2 : |z| > 2

Taking each case in turn,

on D1: Using partial fractions,

f (z) =
−1
2
z
− 1

4
1

1− 1
2 z

Now, since |z| < 2,
∣∣∣ 1

2 z
∣∣∣ < 1 and hence

f (z) =
−1
2
z
− 1

4

∞

∑
n=0

(
1
2

z
)n

=
−1
2
z
−

∞

∑
n=0

zn

2n+2

= −
∞

∑
n=−1

zn

2n+2
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This is therefore the unique Laurent series expansion on D1.

on D2: Again using partial fractions,

f (z) =
−1
2
z

+
1
2

z− 2

=
−1
2
z

+
1
2

z
(

1− 2
z

)
=

−1
2
z

+
−1
2
z

∞

∑
n=0

(
2
z

)n

=
−1
2
z

∞

∑
n=1

(
2
z

)n

=
∞

∑
n=1

2n−1

zn+1

=
−2

∑
n=−∞

1
2n−2 zn

Both cases are now covered, each of them has its own unique Laurent series. �

(17.4.2) Singularities & Residues

Singularities

It has been seen that functions may have ‘bad points’ in their domain which prevent—or in some cases
cause—certain results to be used. This idea is now formalised.

For an analytic function f , p is a zero of f if f (p) = 0. Consider the Taylor series expansion of such a function
about a zero p,

f (z) =
∞

∑
n=0

an(z− p)n

If f (z) 6= 0 then the sum must have a first non-zero term, say when n = N. This gives f (N)(p) 6= 0 and
f (m)(p) = 0 for all m < N. Here N is called the order of the zero—the number of times the function can be
differentiated without it disappearing. Observe that the Taylor series can be expressed as

f (z) = (z− p)N

(
f (N)(p)

N!
+

f (N+1)(p)
(N + 1)!

(z− p) + . . .

)

Which is in the form (z− p)N g(z) where g is an analytic function.

Definition 53 Suppose that p ∈ C and f is a function. p is an isolated singularity of f if

• f is not analytic at p.

• ∃ε > 0 such that f is analytic on B(p, ε) \ {p}.

Notice that if there is an isolated singularity at p then f has a Laurent series expansion about p, although
the radius of convergence may only be very small, say

f (z) =
∞

∑
n=−∞

cn(z− p)n =
∞

∑
n=1

bn

(z− p)n +
∞

∑
n=0

an(z− p)n

where bn = c−n.
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The term
∞

∑
n=1

bn

(z− p)n is called the principal part of f .

• If there are a finite number of terms in the principal part of f , i.e. ∃N ∈ N such that bn = 0 ∀n > N,
then p is said to be a pole of order N. If N = 1 then p is a simple pole.

• If there does not exist such an N, so that ∀n ∈ N ∃k > n such that bk 6= 0, then p is called an isolated
essential singularity.

• If bn = 0 ∀n ∈ N then p is called a removable singularity.

These different situations are probably best illustrated by means of the following three cases.

• Let f (z) =
1
z

. This is already its Laurent expansion about zero, and clearly cn 6= 0 ⇔ n = −1. Hence
0 is a simple pole of f .

• Let f (z) =
z + 3

(z− 2)5 . Performing some algebra,

f (z) =
z + 3

(z− 2)5 =
z− 2 + 5
(z− 2)5 =

1
(z− 2)4 +

5
(z− 2)5

From this Laurent expansion it is evident that f has a pole of order 5 at z = 2.

• The function f (z) =
z7

z2 is not defined at z = 0. However, clearly its Laurent expansion is z5 and so it

has a removable singularity at z = 0. A more usual example of this is the function sin
1
z

.

Theorem 54 The following are equivalent

1. f (z) has a pole of order N.

2. lim
z→p

(z− p)N+1 f (z) = 0.

3. (z− p)N f (z) has a removable singularity.

Proof. To prove equivalence a circular relationship is established.

1 ⇒ 2 Consider the Laurent expansion of f ,

f (z) =
bN

(z− p)N +
bN−1

(z− p)N−1 + · · ·+ a0 + a1(z− p) + . . .

(z− p)N+1 f (z) =
bN(z− p)N+1

(z− p)N +
bN−1(z− p)N−1

(z− p)N−1 + · · ·+ a0(z− p)N+1 + a1(z− p)N+2 + . . .

From this it is clear that lim
z→p

(z− p)N+1 f (z) = 0, as required.

2 ⇒ 3

lim
z→p

(z− p)N+1 f (z) = 0

lim
z→p

(z− p)N+1
∞

∑
n=−∞

cn(z− p)n = 0

lim
z→p

∞

∑
n=−∞

cn(z− p)n+N+1 = 0

lim
z→p

∞

∑
(−(N+1)

cn(z− p)n+N+1 = 0 by excluding bad terms

lim
z→p

∞

∑
m=0

cm(z− p)m = 0 by putting m = n− (N + 1)
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This series has no terms of negative power, so the singularity must be removable.

3 ⇒ 1 In a similar way to before, since (z− p)N f (z) has a removable singularity,

(z− p)N f (z) =
∞

∑
n=0

an(z− p)n

f (z) =
∞

∑
n=0

an
(z− p)n

(z− p)N

=
N

∑
m=1

bm

(z− p)m +
∞

∑
m=0

am(z− p)m

With the last line following by shifting the sum. By definition it is evident that f has a pole of order
N, hence this implication is proved.

It has now been established that 1 ⇒ 2 ⇒ 3 ⇒ 1 so the equivalence is proved. �

Theorem 55 (The Great Picard) Suppose that f is a complex function with an isolated essential singularity at z0.
Then f takes all values with at most one exception, in any neighbourhood of z0.

This theorem indicates the very different nature of simple poles and isolated essential singularities. If z0 is
a simple pole of f then | f (z)| → ∞ as z → z0 without exception. With the isolated essential singularities,
f (z) can approach any value, depending on how z → z0.

Residues

Definition 56 Let f be a complex function defined on a domain D, and let p be an isolated singularity in D. If the
Laurent expansion of f about p is

f (z) =
∞

∑
n=−∞

cn(z− p)n

then the residue of f at p is defined as

Res ( f , p)
def
= c−1 =

1
2πi

∫
γ

f (z)
(z− p)−1+1 dz =

1
2πi

∫
γ

f (z) dz

The integral expression follows from the difinition of a Laurent series.

Theorem 57 (The Residue Theorem) Suppose that γ is a simple closed contour in a domain D, and let f be a complex
function which is analytic on D except at finitely many points, p1, p2, . . . , pk, all of which line in Int γ. Then

∫
γ

f (z) dz = 2πi
k

∑
i=1

Res ( f , pi)

Proof. Since the singularities are isolated they can each be contained within a contour, γ1, γ2, . . . , γk, say. By
Cauchy-Goursat for multiply connected domains (Theorem 42),

∫
γ

f (z) dz =
k

∑
i=1

∫
γi

f (z) dz

= 2πi
k

∑
i=1

Res ( f , pi)

which follows directly from the definition of a residue. �
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The obvious way to calculate a residue is to find the appropriate Laurent expansion and pick out the −1th
coefficient. However, there are more efficient ways to proceed.

Rule 1. If f has a simple pole at p, Res ( f , p) = lim
z→p

(z− p) f (z).

Rule 2. If f (z) =
g(z)
h(z)

where g and h are analytic on a domain U, then if f has a simple pole at p and

g(p) = 0 then Res ( f , p) = lim
z→p

h(z)
g′(z)

.

Rule 3. If f has a pole of order m at p, then where g(z) = (z− p)m f (z), Res ( f , p) = lim
z→p

g(m−1)(z)
(m− 1)!

.

Rule 4. If f (z) =
g(z)
h(z)

where g and h are analytic on a domain U, then if f has an isolated essential singu-

larity at p calculate the first few terms of the Taylor series of g and h, and then divide.

Rule 5. Calculate the Laurent series expansion of f directly.

(17.4.3) Evaluation Of Real Integrals

Integrals Of Trigonometric Formulae

An integral of the form
∫ 2π

0 f ( cos θ, sin θ) dθ can be evaluated by making a substitution—or rather the
opposite to a substitution. Consider z 7→ eiθ so

cos θ =
1
2

(
z +

1
z

)
and sin θ =

1
2i

(
z− 1

z

)

This substitution also gives
dz
dθ

= iz. Hence

∫ 2π

0
f ( cos θ, sin θ) dθ =

∫
γ

f
(

1
2

(
z +

1
z

)
,

1
2i

(
z− 1

z

))
1
iz

dz

where γ is the unit circle, and note that on the unit circle z = z. Finding and evaluating residues at the
singularities in Int γ allows the integral to be evaluated using Theorem 57.

It is necessary to integrate the complex integral round the unit circle so that it reduces to the original integral:
introducing a factor to change the radius will change the value of the integral.

Improper Integrals

Improper integrals of the variety with infinite limits can be evaluated, provided the Cauchy principal value
definition of the integral is taken, i.e.

∫ ∞

−∞
f (x) dx def= lim

R→∞

∫ R

−R
f (x) dx

This definition has the advantage that when f is an odd function the value of the integral is zero at all stages
of the limiting progress. Indeed, other definitions produce different values for the integral.

Simply substituting z for x in f , consider the integral of f (z) round the semi-circular contour

γR = {z | |z| = r then Im z = 0}

This is illustrated in Figure 17.4.3.
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-

Im z
6

Re z

γR
AK

-

Figure 4: Contour of integration for use in evaluating improper real integrals.

It is required that f (z) is analytic on the upper half plane, except at finitely many poles, none of which are
on the real axis. R is then chosen so that all the singularities of f (z) (in the upper half plane) are contained
in Int γR. The problem is now reduced to finding the residues of f (z) at the singularities in Int γR and using
the residue theorem (Theorem 57). Where γRc is the circular part of γR and γRs is the straight part, this gives

lim
R→∞

(∫
γR

f (z) dz
)

= lim
R→∞

(∫
γRc

f (z) dz +
∫

γRs

f (z) dz
)

=
∫ ∞

−∞
f (x) dx + lim

R→∞

∫
γRc

f (z) dz∫ ∞

−∞
f (x) dx = lim

R→∞

(∫
γR

f (z) dz−
∫

γRc

f (z) dz
)

= 2πi ∑ Res ( f , p)− lim
R→∞

∫
γRc

f (z) dz

The remaining problem now is to show that the integral round the semi-circular part of γR is zero.

In some cases it is possible to use the ML result, observe that on γRc , |z| = R and that

|z| = |z− c + c| 6 |z + c| − |c| hence |z + c| > |z|+ |c|

In other cases a more detailed analysis is needed.

Lemma 58 (Jordan’s Lemma) Let γR =
{

z | z = Reiθ for 0 6 θ 6 π
}

and suppose that M(R) = sup
z∈γR

| f (z)|. Then

if lim
R→∞

M(R) = 0,

lim
R→∞

∫
γR

eiαz f (z) dz = 0

for all α > 0.

This allows integrals of the form ∫ ∞

−∞

cos x
p(x)

dx p(x) is a polynomial

to be solved by considering
eiz

p(z)
.

Indenting Integrals

If there are any singularities on the real axis, then the method described above does not work. In order to
evaluate such integrals the singularities are ‘jumped over’. The contour of integration is shown in Figure
17.4.3

It is assumed that each singularity is a simple pole. Round each pole p define the semi-circular contour of
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-
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Figure 5: Contour of integration for use in evaluating improper real integrals with singularities.

radius ε, γε, which is traversed clockwise—the wrong way. Hence

∫
Γ

f (z) dz =
∫ p−ε

−R
f (z) dz +

∫
γε

f (z) dz +
∫ R

p+ε
f (z) dz +

∫
Γ

f (z) dz

Now, since each pole is simple, the laurent expansion of f (z) about p is of the form

f (z) =
Res ( f , p)

z− p
+ g(z)

where g is analytic and so is continuous, hence by the ML result

lim
ε→0

∫
γε

g(z) dz = 0

and hence
lim
ε→0

∫
γε

f (z) dz = lim
ε→∞

∫
γε

Res ( f , p)
z− p

dz = −πiRes ( f , p)

with the minus because γε is being traversed clockwise, and πi instead of 2πi (from Cauchy’s integral
formula) because only half of γε is being traversed.

Hence where Γ is the complete contour,

∫
Γ

f (z) dz = lim
ε→0

(∫ p−ε

−R
f (z) dz +

∫
γε

f (z) dz +
∫ R

p+ε
f (z) dz +

∫
Γc

f (z) dz
)

2πi ∑
p∈Int Γ

Res ( f , p) =
∫ R

−R
f (z) dz +

∫
Γc

f (z) dz− πi ∑
p∈R

Res ( f , p)

∫ R

−R
f (z) dz = 2πi ∑

p∈Int Γ

Res ( f , p) + πi ∑
p∈R

Res ( f , p)−
∫

Γc

f (z) dz

Using Jordan’s lemma to show that the integral round the semi-circular contour γc is zero as R → ∞ the
solution to the original integral can be found.
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