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Ákos Kiss d Michael R. Laurence e

a Dept. of Computing, Goldsmiths College, University of London, London SE14
6NW, UK.

b @UK PLC 5 Jupiter House, Calleva Park, Aldermaston, Reading, Berkshire,
RG7 8NN, UK

c CREST, Software Systems Engineering Group, Department of Computer
Science, University College London, Malet Place, London, WC1E 6BT, UK.
d Dept. of Software Engineering, Institute of Informatics, University of Szeged,

6720 Szeged, Hungary.
e Dept. of Computer Science, The University of Sheffield, Western Bank, Sheffield

S10 2TN, UK.

Abstract

Weak and strong projection, properties which capture the underlying semantics of
control dependence, are defined. Weak and strong commitment-closedness, generali-
sations of non–termination sensitive and insensitive control dependence to arbitrary
finite directed graphs, are introduced and shown to satisfy these desirable semantic
properties. Low polynomial–time algorithms for computing these generalised forms
of control dependence are given.

Our formulation is attractively simple and, because of its generality, widely ap-
plicable to both existing and future notions of control dependence. To demonstrate
this, it is proved that all published forms of control dependence can be implemented
using weak or strong commitment-closedness, thereby satisfying either the weak or
strong semantics. A by-product of this research has, thus, been to classify all pre-
vious forms of control dependence into just two: weak and strong.

1 Introduction

Control dependence is the relationship that exists between two vertices of a
control flow graph (cfg) representing a program when one vertex determines
whether or not the other can be executed. Informally, vertex v is said to control
vertex w if v computes a value which determines whether w is executed or
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avoided. This fundamental concept in program analysis has been studied since
the 1970s [16] and yet still produces new and surprising results. For example,
recently [3,29,30], it was demonstrated that standard definitions of control
dependence [17], in use for over two decades, were unsuitable for capturing
control dependence in a wide class of reactive systems.

Control dependence is central to many program analysis and transformation
techniques. For instance, it underpins work on program slicing [15,19,22,33],
goto elimination [28] and compiler optimisations [17]. This paper focuses on
the use of control dependence in program slicing [11,21,32], though the defini-
tions and results concerning control dependence that the paper introduces also
apply to other applications. The aim of program slicing is, given a chosen set
of variables and chosen points in the program, to find a set of all statements
which may affect the values of the variables at those points.

Slicing algorithms conventionally use two relations between statements in a
program, or, more precisely, vertices in its control flow graph (cfg). These
are data dependence and control dependence. Statement s is data dependent
on statement t if t assigns a value to a variable v, say, which is referenced in
s and there is a path from t to s with no intervening assignments to v.

Control dependence in program slicing can be understood by considering the
program fragment represented by graph G1(a) in Figure 1. Suppose we are
interested in finding out which program statements contribute to the final
values of variables x and y. The set of vertices of interest is therefore {g, h}
because these are the only vertices that correspond to statements that change
the values of x and y. The vertices {start, end} are also added since these are
traditionally required in a cfg. This gives a starting set {g, h, start, end}.

We now see that predicates p2 and p3 both control which of g and h are
executed, and in turn p1 controls which of p2 and p3 is executed. To compute
the vertices which control {g, h}, we thus build up a closure to finally arrive
at the set {start, g, h, p2, p3, p1, end} which is closed under control dependence.
These vertices are then reconnected to produce the slice G1(c). Vertices p4 and
k have been ‘sliced away’ and a new edge from p2 to g has appeared.

Control dependence has a long history, throughout which authors have sought
to capture the property for certain classes of program graphs of interest. The
first authors to consider control dependence are widely regarded to be Denning
and Denning in their seminal work on secure information flow [16], a topic
which remains highly relevant to this day.

Weiser [34], was the first to express the Dennings’ concept graph–theoretically
in order to support slice construction. Subsequently, Ottenstein and Ottenstein
[26] showed how Weiser’s slicing could be captured as a graph reachability
problem. Ferrante et al. [17] further developed these notions into a formal
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g : x = x+ 1

h : y = y + 1

k : z = 3
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p4 : (y > z)

p2 : (x > y)

p3 : (y > z)

p1 : a == b

(a) To slice G1(a) with respect to {start, h, g, end}...
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g : x = x+ 1

h : y = y + 1

k : z = 3

start

p4 : (y > z)

p2 : (x > y)

p3 : (y > z)

p1 : a == b

(b) ...first, the statements (vertices) in the slice are computed: p2 and p3 are added
because they control h and g and then p1 is added because it controls p2 and p3. This
gives the set {start, p1, p2, p3, h, g, end} which is closed under control dependence.
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g : x = x+ 1

h : y = y + 1

k : z = 3

start

p4 : (y > z)

p2 : (x > y)

p3 : (y > z)

p1 : a == b

(c) These statements are then rewired to produce the slice G1(c) above. Vertices p4
and k have been ‘sliced away’ and a new edge from p2 to g has appeared.

Fig. 1. The use of control dependence in program slicing

characterisation of the program dependence graph 1 .

In the 1990s, a generalisation of control dependence was defined by Bilardi
and Pingali [6]. This generalisation is achieved by abstracting the notion of
dominance to any set of paths. Generalised control dependence is thus ‘pa-
rameterised’ by this set. Instantiating different sets of paths yields different
forms of control dependence. This, in effect, provides a framework for ex-

1 Similar ideas are mentioned in [2,25,31,35].
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pressing different forms of control dependence. The value of the framework
was demonstrated by using it to express those forms of control dependence
known at the time including the weak control dependence of Podgurski and
Clarke [27].

The program dependence graph, later extended to handle procedures as the
System Dependence Graph [23], has formed the basis of many analyses, such
as program slicing, since its introduction in the 1980s. However, more recently,
building on the work of Podgurski and Clarke [27], Ranganath et al. [29,30]
and Amtoft [3] developed new notions of control dependence for reactive sys-
tems. Ranganath et al. [30] showed that the definitions used up until then
were inadequate to handle (increasingly prevalent) reactive systems, in which
programs react to inputs continuously without termination. Such reactive pro-
grams are deliberately written to non–terminate. These programs, thus, have
graphs that contain vertices from which end is not reachable.

The wide range of applications of control dependence and its fundamental na-
ture make it attractive to seek a simple, general characterisation that captures
all previous definitions and which is also readily understood and from which it
is easy to prove results for application areas. This paper introduces semantic
definitions of control dependence, using a simple graph theoretic formulation,
unhindered by specific restrictions on graph properties, such as constraints
on the connectivity of the graph or presence or absence of certain structural
features, such as special vertices.

1.1 Contributions of this paper

In this paper we develop a coherent theory of control dependence. There are
four main contributions:

(1) We give a semantics for non–termination insensitive and non–termination
sensitive control dependence by defining properties which must exist be-
tween graphs and graphs induced by subsets closed under control de-
pendence in its different forms. We call these properties weak and strong
projection.

(2) We introduce weak and strong commitment-closedness: generalisations of
non–termination insensitive and non–termination sensitive control depen-
dence which we prove satisfy our semantics. Unlike conventional control
dependence, these are defined not just for traditional control flow graphs
but also for more general structures.

(3) In program slicing, we require slices to be as small as possible. With this
in mind, we give low order polynomial worst–case time complexity algo-
rithms for computing the unique minimal weak and strong commitment-
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closed sets. These algorithms are functionally equivalent to previous ones
but more generally applicable.

(4) We believe that weak and strong projection capture the essence of con-
trol dependence. We demonstrate this by showing that all forms of control
dependence in the literature can be implemented using weak and strong
commitment-closedness. In so doing we provide a classification of all pre-
vious forms of control dependence into just two: weak and strong.

1.2 Overview of the paper structure and results

This section provides an overview of the technical contributions of the paper
and the structure within which they are presented in the remainder of the
paper.

In Section 2, we define a generalised form of cfg upon which the rest of our
theory is built. Our cfgs are finite, directed, labelled graphs. They are simple
in the sense that we do not need variables, assignments and expressions (these
are only needed for data–dependence). The edges are labelled with subsets of
{T,F}. Our cfgs are deterministic in the sense that edges from the same ver-
tex must be disjointly labelled. Many of the definitions of control dependence
in the literature impose constraints upon the types of graph for which they are
defined. Our graphs encompass all those previously considered in the litera-
ture. They need not have a special end vertex which, when reached, represents
successful termination. If it exists, the end vertex need not be reachable from
all vertices. We allow all vertices to have out–degree zero and we allow predi-
cates to have out–degree one. Leaving such ‘incomplete’ vertices corresponds
to our program failing which we think of as reaching a state of silent non–
termination. Intuitively, this can be thought of as the program appearing to
do nothing but never returning to the operating system prompt. Incomplete
vertices give rise to finite yet ‘non–terminating’ paths. Using the language of
process algebra [24], we imagine the program infinitely engaging in (silent) τ–
actions after reaching an incomplete vertex. It will be shown that graphs with
incomplete vertices arise naturally in constructing minimal strong projections
from deliberately non–terminating cfgs. Finally, our cfgs do not require a
special start vertex.

We define a number of useful graph–theoretic concepts including V ′–intervals
and V ′–paths, where V ′ is a set of vertices. A V ′–interval is a path whose
initial and final elements are both in V ′ but the intermediate ones are not. A
V ′–path is a path of length at least two whose final element lies in V ′, its first
element may be in V ′, but none of its intermediate elements are in V ′.

In Section 3, we describe the ‘rewiring’ problem: given a cfg G and a subset V ′
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of the vertices of G (representing the statements in the slice of G), how do we
connect the elements of V ′ and relabel the new edges in a ‘sensible’ way? We
call this the graph induced by V ′ from G. Rewiring is achieved by connecting
vertices v1 and v2 in G′ if and only if there is a V ′–interval connecting them 2

in G. Edge labels are formed by taking the union of ‘corresponding’ edges in
the original.

In Section 4, we define weak and strong projections. These are semantic rela-
tions which exist between graphs and the graphs induced from them by subsets
of vertices closed under termination insensitive and termination sensitive con-
trol dependence respectively.

These projections are defined in terms of walks. A walk is very similar to
a path, but elements which are predicates also include the boolean value in
{T,F} representing the ‘choice’ that was taken at that predicate. A weak
projection is a graph where every walk of the original, when restricted to the
vertices of the projection, is a walk of the projection. This is analogous to the
situation that arises in conventional slicing where if the original executes n
times a statement that is also in the slice then the slice, when executed from
the same initial state, also executes the statement n times. As is well known,
in conventional slicing we may execute this statement more times in the slice
than in the original program because, for example, non–terminating loops may
have been sliced away. This is also the case with weak projections.

The graph induced from a cfg G by V ′ is not necessarily, itself, a cfg. In
general, it may contain non–predicate vertices of out–degree greater than one,
predicates of out–degree greater than two, or non–disjoint edge labellings. We
prove (Proposition 18) that being a weak projection is no more than a by–
product resulting from ensuring that the induced graph is indeed a cfg. In
other words, if the induced graph from a cfg is a cfg then it must be a weak
projection of the original too.

Weak projection captures the behaviour of slices produced using the weak
forms of control dependence (see Figure 2.) A stronger semantics is, however,
required for slices produced using the strong forms of control dependence.
With this aim, in Section 4.3, we define a strong projection. In the case of
strong projection, every maximal walk of the original, when restricted to the
vertices of the projection, gives rise to a maximal walk of the projection.
Moreover, every walk of the projection arises in this way. For strong projection
the number of times a walk passes through a vertex in the projection must
be equal to the number of times the corresponding walk in the original passes
though the vertex.

2 This is not the first paper to define rewiring in this way. Earlier work [1,20] uses
very similar definitions.
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Weak Control Dependence Strong Control Dependence

W-controls−−−−−−→ [34]

F-controls−−−−−→ [17]

WOD−−−→ [3]

PC-weak−−−−−→ [27]

NTSCD−−−−→ and
DOD−−−→ [30]

Fig. 2. Table showing the different forms of weak and strong control dependence.

In Section 4.4, we observe that both weak and strong projections either may
or may not preserve the termination conditions of the original. This is also true
of the so–called non-termination sensitive control dependence of Ranganath
et al. [30]. Termination and walk preservation are orthogonal conditions. The
weak projection of a cfg G may terminate when G does not. Strong projec-
tions, on the other hand, are always non-termination preserving. If a weak or
strong projection of a cfg contains end then it termination preserving. Strong
projections containing end of a cfg G, thus, perfectly preserve the termination
and non-termination of G.

In Section 5, we develop a theory of weak and strong commitment–closedness,
generalisations of non-termination sensitive and insensitive control depen-
dence. We prove that these are properties of vertex sets which are necessary
and sufficient to induce graphs which are weak and strong projections. Weak
and strong commitment–closedness are used both in the production of algo-
rithms for producing minimal weak and strong projections and also in the
proofs that classify the previous forms of control dependence as either weak
or strong.

In Sections 5.1 and 5.2, we define weak and strong commitment–closedness. In
Section 5.3, we investigate graphs induced by weakly commitment–closed sets.
The main result of Section 5.3 is Theorem 41 which states that the following
three statements are all equivalent:

• The graph induced by V ′ from G is a cfg.
• V ′ is weakly commitment–closed in G.
• The graph induced by V ′ from G is a weak projection of G.

In Section 5.4, we investigate graphs induced by strongly commitment–closed
sets. The main result of Section 5.4 is Theorem 45 which states that the graph
induced by V ′ from G is a strong projection if and only if V ′ is strongly
commitment–closed in G.

In Section 5.5, we prove Theorems 50 and 54 which state that given any
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set V ′ of vertices in a cfg, there are unique minimal weakly and strongly
commitment–closed sets containing V ′. These are the sets that are closed
under control dependence which are required for slicing. This proves that for
any vertex subset V ′ of cfg G, unique minimal weak and strong projections
(slices) containing V ′ exist.

In Section 6, algorithms for computing minimal weak and strongly commitment–
closed sets containing V ′ are defined and proved correct. This demonstrates
that minimal weak and strong projections (slices) containing V ′ are com-
putable. Furthermore, we show that these algorithms have worst–case time
complexity O(|G|4), where |G| = |V |+ |E|. For cfgs, since the maximum out–
degree is two, we have O(|G|) = O(|V |), giving a worst–case time complexity
of O(|V |4). This is of a very similar order to the worst–case time complexity
of the algorithms for computing the new control dependences of Ranganath
et al. which is O(|V |4log|V |). It is likely that the efficiency of these algorithms
can be improved, but this is a topic for future work and is beyond the scope
of this paper.

In Section 7, we categorise the weak forms of control dependence in the liter-
ature.

They are:

• W-controls−−−−−−→: the control dependence of Weiser [34],

• F-controls−−−−−→: the control dependence of Ferrante et al. [17] and

• WOD−−−→: the weak order dependence of Amtoft [3].

The results of this section give the relationship between sets closed under the
weak forms of control dependence mentioned above and weakly commitment–
closed sets.

From these, we prove our main result, Theorem 62, which states that, indeed,
all weak forms of control dependence in the literature induce weak projections.

In Section 8, we categorise the strong forms of control dependence in the
literature. We call them strong because, as we show in this section, vertex sets
closed under them induce strong projections. They are:

• the combination of
NTSCD−−−−→ and

DOD−−−→ of Ranganath et al. [30].

• PC-weak−−−−−→, the weak control dependence of Podgurski and Clarke [27].

The results of this section give the relationship between sets closed under the
strong forms of control dependence mentioned above and strongly commitment–
closed sets. From these, we can prove our main result of this section, Theo-
rem 80, which shows that, indeed, both strong forms of control dependence in
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the literature induce strong projections. Sections 7 and 8, as well as seman-
tically characterising current forms of control dependence, justify our claim
that weak and strong projection capture the essence of control dependence.

In Section 9, we conclude and give directions for future work.

2 Generalised CFGs for control dependence

Our graphs, since we are exploring only control dependence, do not need
the variables, assignments and expressions which would be required for data–
dependence. We can therefore have a very simple definition of a cfg. Our
cfgs are finite directed graphs whose vertices are either predicates or non–
predicates. Non–predicates have out–degree of at most one and predicates of
out–degree of at most two. The edges emerging from predicates are labelled
with subsets of {T,F}. This allows for a predicate with one edge labelled {T,F}
to represent a predicate where both branches go to the same destination. The
labellings of the edges from each predicate must be disjoint. In other words,
our cfgs are deterministic.

There is at most one special non–predicate vertex called end of out–degree
zero. Reaching end corresponds to termination. Unlike conventional cfgs,
we allow other non–predicates to have out–degree zero and predicates (in-
complete) to have edges whose union of labels is not {T,F}. Reaching such
vertices corresponds to a program silently non–terminating. We imagine pro-
grams which reach such vertices apparently not performing any actions but
also not returning to the ‘operating system prompt’. This situation arises nat-
urally when slicing away infinite loops when preserving termination properties.
Unlike, conventional cfgs we do not insist on a special start vertex.

Definition 1 (CFGs) A control flow graph (cfg) is a triple G = (V,E, β)
where (V,E) is a finite directed graph and the vertex set V is partitioned as
V = P ∪ N (predicates and non–predicates) with P ∩ N = ∅, and β : E →
P({T,F}) is the edge labelling function.

(1) • If x ∈ P then the out–degree of x is at most 2.
• If x ∈ N then the out–degree of x is at most 1.
• There is at most one end vertex. It has out–degree 0. (end ∈ N is the

only vertex which represents normal termination.)
(2) The edges are labelled by β where:
• If x ∈ P and (x, y) ∈ E then β(x, y) 6= ∅.
• If x ∈ N and (x, y) ∈ E then β(x, y) = ∅.

(For clarity we omit the label ∅ from our diagrams.)
(3) Let p be a predicate. If (p, y) ∈ E and (p, z) ∈ E with y 6= z then
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{T}
{T,F} {F}

endh

k

m

start p0 p1

(a) G3(a): a cfg with a complete predicate p0 of out–degree 1.

{T}
{T} {F}

endh

k

m

start p0 p1

(b) G3(b): A cfg with an incomplete predicate p0.

{T}

{T} {F}

{F}

end

g

h

k

m

start p0

p1

(c) G3(c): a cfg with a final non–end, non–predicate vertex g.

Fig. 3. Examples of cfgs: In (a) the predicate p0, although of out–degree 1 is
complete. Its successor is independent of evaluating p0. In (b) the predicates are
{p0, p1}. Vertex p0 is incomplete since the union of the labels of its branches is not
{T,F}. If predicate p0 evaluates to F, a state representing silent non–termination
is reached. In (c) the predicates are {p0, p1} and both are complete. The other
non–end vertices are non–predicates and have out–degree 1 except for g which is a
final non–end vertex. After executing g, again all programs represented by G3(c) are
deemed to silently non–terminate.

β(p, y) ∩ β(p, z) = ∅. (In other words, our cfgs are deterministic.)

See Figure 3 for examples of cfgs.

Definition 2 (Complete predicates of a CFG) A predicate is complete
if and only if the union of the labels of its outgoing edges is {T,F}.

Definition 3 (Complete CFGs) A cfg is complete if and only if all its
predicates are complete.

Definition 4 (Final vertices of a CFG) A final vertex is either a non–
predicate vertex of out–degree 0 or an incomplete predicate.
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2.1 Specialised classes of graphs and CFGs

The previous forms of control dependence variously make references to a
unique start or end of the program or cfg. The following definition gives
notation for the required classes of specialised graphs and cfgs.

Definition 5 ({start, end}–CFGs and graphs) Let G = (V,E) be a finite
directed graph.

(1) If G has a unique distinguished vertex start ∈ V and every v ∈ V is
reachable from start then G is a {start}–graph.

(2) If G has a unique distinguished vertex end ∈ V that is reachable from
every vertex v ∈ V then G is an {end}–graph.

(3) If G is a {start}–graph and G is also an {end}–graph then G is a {start, end}–
graph.

If G = (V,E, β) is a cfg and the graph (V,E) is a {start}–graph then we call
G a {start}–cfg, etc.

2.2 Useful graph–theoretic definitions

Definition 6 (Paths of a graph) A path in a graph G = (V,E) is a se-
quence of vertices v1, . . . , vi, vi+1, . . . with (vi, vi+1) ∈ E for all i.

Note that paths can be empty (of length zero), of length one (consisting of a
single vertex), or even infinite.

Definition 7 (Proper paths) A path is proper if its initial and final ver-
tices are distinct.

Definition 8 (Prefixes) A prefix of a path π is a path ρ such that there
exists a path σ with π = ρσ (the concatenation of ρ and σ). Note π is a prefix
of itself. Write ρ v π. If ρ v π and ρ 6= π, ρ is called a ‘proper’ prefix of π.

Definition 9 (V ′–intervals and V ′–paths) Let G = (V,E) be a graph and
let V ′ ⊆ V .

• A V ′–interval is a finite path of length > 1 in G where only the first and
last elements are in V ′.
• An [l,m] V ′–interval is a V ′–interval that starts at l ∈ V ′ and ends at
m ∈ V ′.
• A V ′–path [18] is a finite path v1 . . . vm in G where m > 1, vm ∈ V ′ and

1 < i < m ⇒ vi /∈ V ′.
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{T} {F}

{F}
endg

k

start p0

p1

(a) G4(a): Predicate p1 is not complete.

{T}
{T,F} {F}

h

k

m

start p0 p1

(b) G4(b): A cfg without end.

{T}
{T} {F}
{T,F}

end

g

h

k

m

start p0

p1

(c) G4(c): Not a cfg (non–deterministic).

Fig. 4. (a) and (b) are cfgs but (c) is not. In (a) the final vertices are p1 and end.
In (b) the only final vertex is m and the absence of end means that all complete
paths are non–terminating.

A V ′–path is a path whose last element is in V ′ and whose first element may
be in V ′ but none of the other elements are in V ′. A V ′–interval is a V ′–path
but not necessarily the converse 3 .

Definition 10 (Complete Paths of a CFG) A complete path is either an
infinite path or a finite path whose last vertex is final.

2.3 Examples

In Figure 3(c) the only terminating paths are those whose final vertex is
end. The complete paths ending at g although finite are considered non–
terminating because g 6= end. Complete paths through k are infinite and hence
non–terminating.

G4(a) in Figure 4(a) is an example of a cfg where a predicate (p1) is incom-
plete. Therefore p1 is a final vertex and there are complete paths of G4(a)

which end at p1. These complete paths correspond to the situation where the
predicate expression at p1 evaluates to T.

3 Ranganath et al. [30] define a similar concept: the first observable elements from
v, written obs1may(v) is the set of first elements at the end of a V ′–path from v.
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G4(b) in Figure 4(b) is an example of a cfg without an end vertex. All complete
paths of G4(b), including the finite ones, are thus non–terminating.

G4(c) in Figure 4(c) is not a cfg. If p0 evaluates to T there is a choice of which
edge to follow.

3 The induced graph

Given a program and a slicing criterion, a slicing algorithm produces a subset
of the statements of the program, containing the slicing criterion. Normally,
the slice produced is a valid and executable program. For a cfg G = (V,E, β)
the slicing criterion is a set V ′ ⊆ V of the vertices and a slicing algorithm will
produce a possibly larger subset V ′ ⊆ V ′′ ⊆ V . The problem now is to make
a valid cfg on V ′′.

In this section we show how to define a graph on such a subset by ‘rewiring’
the edges of the original cfg – this is called the induced graph.

For any cfg G = (V,E, β) and V ′ ⊆ V , we can construct a new graph on
V ′ by connecting x ∈ V ′ to y ∈ V ′ if and only if there is a [x, y] V ′–interval
(Definition 9). The new edge (x, y) ∈ E ′ is labelled by the union of the labels
of the edges (x, x′) ∈ E where x′ is a successor of x from which there is a path
in G to y.

Definition 11 (The induced graph) Let G = (V,E, β) be a cfg and let
V ′ ⊆ V . The graph induced by V ′ from G has edge set E ′ ⊆ V ′ × V ′ where
(x, y) ∈ E ′ if and only if there is a V ′–interval x, . . . , y in G. In the graph
induced by V ′ from G ,

β′(x, y) =
⋃

x′∈K
β(x, x′)

where K = {x′ ∈ V | (x, x′, . . . , y) is a V ′–interval}.

The predicates and non–predicates of the graph induced by V ′ from G are
deemed to be V ′ ∩ P and V ′ ∩ N , where P and N are the predicates and
non–predicates of G respectively.

In general, the induced graph is not a cfg because the rewiring may increase
the out–degree of vertices, and may destroy the necessary disjointness property
of edge labels in a cfg. Figure 5 gives three examples of induced graphs, one of
which is a cfg and two of which are not. Figure 5(c) shows the graph induced
by {start, h, g} from G5. It has an edge (start, h) because there is a {start, h}–
interval, startp0p1h, in G5. Similarly, it has an edge (start, g). Clearly the graph
induced by {start, h, g} from G5 is not a cfg as it has a non–predicate vertex
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{T}

{T} {F}

{F}

end

g

h

k

m

start p0

p1

(a) cfg G5.

{T}
{T}

{T}
{F}

{F}
end

g

h

k

m
start p0

p1

(b) The graph induced by {start, p0, h, g} from G5 is a cfg.

{T}{T}
{F}{F}

end

g

h

k

m

start p0
p1

(c) The graph induced by {start, h, g} from G5 is not a cfg because it has a
non–predicate vertex of out–degree greater than one.

{T}
{T}

{T}

{T} {F}
{F}

end

g

h

k

m

start p0

p1

(d) The graph induced by {p0, h, g, k} from G5 is not a cfg because it has a
predicate vertex with non–disjoint edge labels.

Fig. 5. Inducing graphs from G5 and different sets of vertices (Definition 11). Dotted
edges and vertices represent those that are removed in producing the induced graph.
Solid edges and labels represent those that remain in the induced graph.

start of out–degree greater than 1. Similarly, the graph induced by {p0, h, g, k}
from G5 is not a cfg because it has a predicate vertex p0 with non–disjoint
edge labels.

In the next section we will show that for the graph induced by V ′ from G to
be a cfg, V ′ must be weakly commitment–closed in G.
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4 Weak and strong projections: a semantics of control dependence

In this section, we define weak and strong projections; properties that are
preserved between graphs and graphs induced by sets closed under control
dependence. The concepts of weak and strong projection are a semantics of
non–termination insensitive and non–termination sensitive control dependence
respectively. Later, in Sections 7 and 8, we demonstrate this by showing that
all forms of control dependence in the literature are special cases of weak and
strong projections. This provides strong evidence for our belief that these pro-
jections capture the underlying intention and essence of control dependence.

The semantic relationship between programs and their slices has been well
studied [5,8–10,12–14]. Weak projection expresses a property analogous to the
property of conventional slicing where if the program executes statement s n
times then the slice, when executed from the same initial state, also executes
s at least n times (if, of course, s is in the slice). In conventional slicing, s
may execute more times in the slice than in the original program because, for
example, non–terminating loops that prevent s being reached may have been
sliced away. This is also true of weak projections. Strong projections, on the
other hand, are analogous to the form of slice where for all initial states, s will
execute exactly the same number of times in the slice as in the original.

We define weak and strong projections in terms of walks and give necessary
and sufficient conditions for subsets of vertices of a cfg to induce weak and
strong projections respectively. It turns out that the graph induced by V ′ from
G is a weak projection of V ′ if and only if V ′ is weakly commitment–closed in G
(Theorem 41). We go on to define a stronger condition, Strong commitment–
closedness, and prove an analogous result, Theorem 45, for strong projections.

4.1 Walks of a cfg

Conventional semantic slices are defined in terms of program executions, so
we first define an analogous concept for cfgs using walks. A walk of a cfg
is similar to a graph–theoretic path of a cfg, except that predicate vertices
are replaced with a pair (p,B) where B ∈ {T,F} to represent evaluation of p.
Notice, we are not defining a particular start vertex. Our paths and walks can
start at any vertex in the graph.

Definition 12 (Elements) Let G = (V,E, β) be a cfg. An element w is
either a vertex v ∈ N ⊆ V , or a pair (p,B) where p ∈ P ⊆ V and B ∈ {T,F}.
Write w̄ for the vertex component of an element and ¯̄w for the second (boolean)
component of the pair when it exists.
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Definition 13 (Walks) Let G = (V,E, β) be a cfg. A walk ω in G is a
sequence w1, w2, . . . , wi, . . . of elements where:

(1) ω̄ = w̄1, w̄2, . . . , w̄i, . . . is a path in G; and
(2) if wi, wi+1 are consecutive elements of ω and w̄i is a predicate vertex then

¯̄wi ∈ β(w̄i, w̄i+1).

For example the cfg G4(b) in Figure 4 has a path π1 = p0, p1, h,m and there
are two walks:

ω1 = (p0,T), (p1,T), h,m

and ω2 = (p0,F), (p1,T), h,m

which give rise to path π1.

Observe that start, (p0,F) is a walk of G3(a) in Figure 3 although p0 does not
have a false branch. This walk cannot go any further. It is an example of a
finite maximal walk caused by incomplete predicates.

Definition 14 (
−→
G) Let G be a cfg.

−→
G is the set of all walks in G.

4.2 Weak projections of a cfg

Restricting a path to a set of vertices means removing all the vertices not in
the set.

Definition 15 (Path Restriction) Let G = (V,E) be a graph, let V ′ ⊆ V ,
and let π be a path in G. π↓V ′ is the subsequence of π obtained by removing
all vertices v of π where v /∈ V ′. We say π↓V ′ is the restriction of π to V ′.

Analogously, restricting a walk to a set of vertices means removing all the
elements whose vertex component is not in the set.

Definition 16 (Walk restriction) Let G = (V,E, β) be a cfg, let V ′ ⊆ V ,
and let ω be a walk in G. Define ω↓V ′ to be the subsequence of ω obtained by
removing all elements ωi of ω where ω̄i /∈ V ′. We say ω↓V ′ is the restriction
of ω to V ′.

Note that ω↓V ′ = ω̄↓V ′.

Definition 17 (Weak projections) Given a cfg G = (V,E, β), a cfg
G′ = (V ′, E ′, β′) (V ′ ⊆ V ) is a weak projection of G if and only if and
every walk of G when restricted to V ′, is a walk of G′. i.e.,

ω ∈
−→
G =⇒ ω↓V ′ ∈

−→
G′.

16



Figure 6 gives some examples of weak projections. Here G6(b) is a weak pro-
jection of G6(a). The walks of G6(a) are the 46 segments 4 of the three walks:

start, (p0,T), (p1,F), k, end

start, (p0,T), (p1,T), h,m, end

start, (p0,F), g, end

and the walks of G6(b) are all 12 segments of the two walks:

start, (p0,T), h

start, (p0,F), g.

Every walk of G6(a) when restricted to the vertices {start, p0, h, g} of G6(b) is
a walk of G6(b). Similarly, G6(c) is a weak projection of G6(a).

Proposition 18 Let G = (V,E, β) be a cfg and V ′ ⊆ V . If the graph induced
by V ′ from G is a cfg then the graph induced by V ′ from G is a weak projection
of G.

PROOF. Let

ω = ω1, . . . , ωi, ωi+1, . . . be a walk of G

and write ω↓V ′ = ωn1 , . . . , ωni
, ωni+1

, . . .

where 1 < n1 < n2 < · · · . Then

ω̄ni
, ω̄ni+1, . . . , ω̄ni+1

is a V ′–interval, and hence by Definition 11

ω̄n1 , . . . , ω̄ni
, ω̄ni+1

, . . .

is a path in the graph induced by V ′ from G. Finally, again by Definition
11 we have β(ω̄ni

, ω̄ni+1) ⊆ β′(ω̄ni
, ω̄ni+1

) and so ω↓V ′ is a walk of the graph
induced by V ′ from G.

This shows that the mere act of ensuring that the induced graph is well–formed
will also ensure it satisfies the semantic property of being a weak projection.

4 A segment of a sequence is contiguous sequence of elements of the sequence. For
example the sequence {u, v, w} has segments {u, v, w}, {u, v}, {v, w}, {u}, {v}, and
{w} but not {u,w}.
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{T}

{T} {F}
{F}

end
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start p0

p1

(a) G6(a).

{T}
{T}

{T}
{F}

{F}

end

g

h

k

m
start p0

p1

(b) G6(b) is a weak projection of G6(a).

{T}

{T}
{F}

{F}

end

g

h

k

m

start p0

p1

(c) G6(c) is also a weak projection of G6(a).

Fig. 6. Two weak projections. Any walk of G6(a) when restricted to the vertices of
G6(b) is a walk in G6(b). Ditto G6(c).

{T}

{T} {F}

{F}

end

g

h

k

m

start p0

p1

Fig. 7. G7 has 13 maximal walks (Definition 19): 3 end at g, 4 end with an infinite
sequence of ks, and 6 end at end.

4.3 Strong projections of a cfg

A strong projection is a weak projection where also maximal walks project
onto maximal walks.

Definition 19 (Maximal walks) A maximal walk of G is a walk which is
not a proper prefix of a walk of G.
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For example the cfg G7 in Figure 7 has thirteen maximal walks. There are
nine finite maximal walks:

start, (p0,F), g

(p0,F), g

g

start, (p0,T), (p1,T), h,m, end

(p0,T), (p1,T), h,m, end

(p1,T), h,m, end

h,m, end

m, end

end

and four infinite maximal walks:

start, (p0,T), (p1,F), k, k, . . .

(p0,T), (p1,F), k, k, . . .

(p1,F), k, k, . . .

k, k, . . ..

The six walks ending with end correspond to executions which terminate nor-
mally. The other walks correspond to non–terminating programs, the finite
ones to ‘silently’ non–terminating executions.

Proposition 20 Let G be a cfg. If ω is a maximal walk of G then ω̄ is a
complete path of G.

PROOF. If ω is infinite then ω̄ is infinite and thus is complete. If ω is finite
then suppose that ω̄ is not complete. Let ω̄ end at v, say, and since ω̄ is not
complete there exists and edge (v, w) ∈ E. But then ω can be extended to w,
contradicting the maximality of ω.

The converse is true only for cfgs where all predicates are complete.

Proposition 21 Let G be a cfg and let ω be a walk in G. If ω̄ is complete
and all predicates in G are complete then ω is maximal.
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PROOF. If ω̄ is infinite then ω is infinite and thus is maximal. If ω̄ is finite
then it ends at a final vertex. Now, all predicate vertices are complete, therefore
all final vertices in G must have out–degree 0, and not 1. Thus ω̄ cannot be a
prefix of any extending path and hence ω is maximal.

The converse of Proposition 20 is not true for cfgs that contain incomplete
predicates. For example in G4(a) in Figure 4(a) the two walks

ω1 = (p0,T), (p1,T)

ω2 = (p0,T), (p1,F)

have ω̄1 = ω̄2 = p0, p1 which is complete because it ends at the final vertex p1.
However, ω1 is maximal but ω2 is not. Nevertheless, as this example implies,
for every complete path π there exists a maximal walk ω with ω̄ = π.

Proposition 22 Let G be a cfg. If π is a complete path of G then there
exists a maximal walk ω of G such that ω̄ = π.

PROOF. Follows immediately from the definitions of maximal walks and
complete paths.

There may exist more than one maximal walk with the same complete path,
for example where an edge is labelled {T,F}.

Definition 23 (Strong projections) Let G = (V,E, β) be a cfg and V ⊆
V ′. A cfg G′ = (V ′, E ′, β′) is a strong projection of cfg if and only if all
maximal walks of G when restricted to V ′ give maximal walks of G′. i.e.,

ω ∈
−→
G is maximal =⇒ ω↓V ′ ∈

−→
G′ and is maximal.

So, for every walk in a strong projection, the number of times we visit a
vertex in the projection is identical to the number of times we visit it in
the corresponding walk in the original. Strong projections have surprising
property: every walk in a strong projection is the restriction of a walk of the
original.

Lemma 24 A strong projection is a weak projection.

PROOF. This follows immediately from the fact that every walk is the prefix
of a maximal walk.
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Lemma 25 Let the cfg G′ = (V ′, E ′, β′) be a strong projection of the cfg
G = (V,E, β). For all (x, y) ∈ E ′ there exists an [x, y] V ′–interval in G.

PROOF. Assume that (x, y) ∈ E ′.

(1) If x is a predicate then without loss of generality we can assume that
T ∈ β′(x, y). Let w be a maximal walk of G starting from (x,T).

Since G′ is a strong projection of G, w↓V ′ is maximal in G′. The walk
w will reach V ′ after (x,T), because otherwise the w↓V ′ is just (x,T),
which cannot be maximal since T ∈ β′(x, y). (This is where the proof
would break down for weak projections.) Therefore let v′ be the first V ′

vertex after (x,T) in w. Since w↓V ′ is a walk of G′, there must be an
edge in (x, v′) ∈ E ′ with T ∈ β′(x, v′). Since G′ is a cfg we must have
y = v′. Hence there is an [x, y] V ′–interval in G as required.

Moreover, it follows that if G′ contains a walk with first element (x,T)
and with second element having vertex component y, then G contains a
walk with first element (x,T), with a later element having vertex compo-
nent y, and with no intermediate element having a vertex component in
V ′. Similarly with F instead of T. (This stronger result is needed in order
to use Lemma 25 for Proposition 26.)

(2) If x is a non–predicate then as above, let w be a maximal walk of G
starting from x. Using the same argument as above, w will reach V ′ after
x and by the uniqueness of the next element of non–predicate vertices we
must have that y is the unique next element after x in w↓V ′. Hence there
is an [x, y] V ′–interval in G as required.

Proposition 26 Let the cfg G′ = (V ′, E ′, β′) be a strong projection of the
cfg G = (V,E, β). For all walks ω′ of G′ there exists a walk ω of G such that
ω↓V ′ = ω′.

PROOF. Follows from Lemma 25 by induction on the length of a finite prefix
of a walk.

In fact every path in a strong projection arises as the slice of a path in the
original, i.e., ‘the path of the strong projection is (exactly) the slice of the
path’. This is different from the weak case where the restriction of a path may
be only a prefix of a path in the induced graph.

Corollary 27 Let the cfg G′ = (V ′, E ′, β′) be a strong projection of the cfg
G = (V,E, β). For all complete paths π′ of G′ there exists a complete path π
of G such that π↓V ′ = π′.
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(a) G8(a)

{T}
{T} {F}
{F}

end

g

h

k

m

start p0

p1

(b) G8(b)

Fig. 8. Strong projections not containing end do not necessarily preserve termination
conditions: G8(b) (removed vertices and edges shown dotted) is a strong projection
of G8(a) The terminating complete path: start p0 p1 h m end in the original induces
the path: start p0 p1 h in the induced graph. This path is non–terminating since it
ends at a non–end non–predicate of out–degree zero.

PROOF. If π′ is a complete path of G′ then by Proposition 22 there is a

maximal walk ω′ ∈
−→
G′ with ω̄′ = π′. By Proposition 26 there exists ω ∈

−→
G

with ω↓V ′ = ω′ If ω is not maximal then simply take any maximal walk µ
extending ω. G′ is a strong projection therefore µ̄↓G′ = π′ for otherwise π′ is
not maximal.

4.4 Weak and strong projections and non–termination

Weak and strong projection of a cfg G may both non-terminate when G ter-
minates. To see this in the weak case, consider G6(b) which is a weak projection
of G6(a) in Figure 6. The terminating walk start, (p0,F), g, end restricts to the
non-terminating walk start, (p0,F), g. This walk is non-terminating because it
ends in a final non–end vertex g in G6(b).

Similarly, to see this in the strong consider G8(b) in Figure 8. G8(b) is a strong
projection of G8(a) The terminating complete path: start p0 p1 h m end in
the original induces the path: start p0 p1 h in the induced graph. This path
is non–terminating since it ends at a non–end non–predicate of out–degree
zero 5 .

5 In this example the smallest set containing {start, g, h} closed under
NTSCD−−−−−→ and

DOD−−−→ of Ranganath et al.(defined later) is also {start, g, h, p0, p1, end} inducing G8(b),
showing that their so called ‘non–termination sensitive control dependence’ does not
always preserve termination conditions either.
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(b) G9(b)

Fig. 9. Termination behaviour is preserved only when end is included in the strong
projection. G9(b) is a strong projection of G9(a). Both have the same termination
conditions.
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(a) cfg G10(a).
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end
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start p0

p1

(b) G10(b)

Fig. 10. G10(b) is a weak projection of G10(a) but it does not preserve non-termi-
nation. Predicate vertex p1, which can lead to non-termination in G10(a), does not
exist in G10(b).

The weak projection of a cfg G may terminate when G does not. To see this,
consider Figure 10. G10(b) is a weak projection of G10(a) but it does not preserve
non-termination. Predicate vertex p1, which can lead to non-termination in
G10(a), does not exist in G10(b).

If a weak or strong projection contains end then it cannot introduce non–
termination. This is stated formally in Lemma 28. A terminating walk is a
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finite walk whose final element is end.

Lemma 28 Let G = (V,E, β) and G′ = (V ′, E ′, β′) be cfgs containing {end}
and let G′ be a weak projection of G. If ω is a terminating walk of G then ω↓V ′
is a terminating walk of G′.

PROOF. This follows immediately from the fact the end ∈ V ′.

Lemma 29 Let G = (V,E, β) and G′ = (V ′, E ′, β′) be cfgs and let G′ be a
strong projection of G. If ω is a non-terminating walk of G then ω↓V ′ is a
non-terminating walk of G′.

PROOF. Suppose ω↓V ′ is a terminating walk of G′. Then by definition, the
final element of ω↓V ′ is end. Now, since V ′ ⊆ V we must have end ∈ V . So
end must be an element of ω and hence ω is terminating. Contradiction.

Since a strong projection is a weak projection, Lemmas 28 and 29 guarantee
that strong projections containing end of a cfg, g, preserve the termination
conditions of g. See Figure 9 for an example.

5 Weak and strong commitment–closedness: a generalisation of
non–termination sensitive and non–termination insensitive con-
trol dependence

In this section we develop a theory of weak and strong commitment–closedness.
These are properties of vertex sets which are necessary and sufficient to induce
graphs which are weak and strong projections. Weak and strong commitment–
closedness are used both in the production of algorithms for producing minimal
weak and strong projections and also in the proofs that classify the previous
forms of control dependence as either weak or strong. An advantage of weak
and strong commitment–closedness is that they are defined for any directed
graph not just cfgs.

5.1 Weak commitment–closedness

Informally, at this stage, a set is weakly commitment–closed if and only if it
is closed under non–termination sensitive control dependence. Before we can
define weak commitment–closedness, we need a preliminary definition:
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Definition 30 (V ′–weakly committing vertices) Let G be a directed graph.
A vertex v is V ′–weakly committing in G if all V ′–paths from v have the same
end point. In other words, there is at most one element of V ′ that is ‘first–
reachable’ from v.

For example, in Figure 5 the predicate p1 is {start, h, g}–weakly committing
in G5 since the only first–reachable vertex in {start, h, g} from p1 is h. Vertex
p0, on the other hand, is not {start, h, g}–weakly committing in G5 since both
h and g are first reachable from p0.

Definition 31 (Weak commitment–closedness) Let G be a directed graph
and let V ′ ⊆ V . V ′ is weakly commitment–closed in G if and only if all vertices
not in V ′ that are reachable from V ′ are V ′–weakly committing in G.

In Figure 5, {start, h, g} is not weakly commitment–closed in G5 because p0
is reachable from {start, h, g} but p0 is not {start, h, g}–weakly committing
since h and g are both first reachable from p0. However, {start, p0, h, g} is
weakly commitment–closed in G5 because all of the vertices of G5 that are not
in {start, p0, h, g} and are reachable from {start, p0, h, g} are {start, p0, h, g}–
weakly committing. Later, we will show that sets closed under all weak forms
of control dependence in the literature are weakly commitment–closed.

5.2 Strong commitment–closedness

Informally a set is weakly commitment–closed if and only if it is closed under
non–termination sensitive control dependence.

Definition 32 (V ′–strongly committing vertices) Let G = (V,E, β) be
a cfg and let V ′ ⊆ V . A vertex v is V ′–strongly committing G if and only if
it is V ′–weakly committing in G and all complete paths in G from v contain
an element of V ′.

This means that all paths from v re–enter V ′ (and do so at the same vertex)
whereas if v is only V ′–weakly committing in G then some paths from v in G
may never re-enter V ′.

Definition 33 (V ′–avoiding vertices) Let G = (V,E, β) be a cfg and let
V ′ ⊆ V . A vertex v is V ′–avoiding in G if and only if no vertex in V ′ is
reachable in G from v.

Definition 34 (Strong commitment–closedness) Let G = (V,E, β) be a
cfg and let V ′ ⊆ V . V ′ is strongly commitment–closed in G if and only if
every vertex in V \V ′ that is reachable in G from V ′ is V ′–strongly committing
or V ′–avoiding in G.
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In Figure 7, the set {start, g, h, end} is not strongly commitment–closed in G7

because p1 is reachable from {start, g, h, end} but is neither {start, g, h, end}–
strongly committing or {start, g, h, end}–avoiding. (Similarly p0.)

In Figure 7, the set {start, p0, p1, h, end} is strongly commitment–closed in
G9(b) because k and g are {start, p0, p1, h, end}–avoiding andm is {start, p0, p1, h, end}–
strongly committing. Later, we will show that sets closed under all strong
forms of control dependence in the literature are strongly commitment–closed.

5.3 Graphs induced by weakly commitment–closed sets

We now develop the theory of graphs induced by weakly commitment–closed
sets. We show that for any subset V ′ of the vertices of a cfg, G, V ′ be-
ing weakly commitment–closed in G is both necessary and sufficient for the
induced graph from V ′ not only to be well formed, but also to be a weak
projection.

Lemma 35 Let G = (V,E, β) be a cfg, V ′ ⊆ V , and v ∈ V ′. If V ′ is weakly
commitment–closed in G then the out–degree of v in the graph induced by V ′

from G is at most the out–degree of v in G.

PROOF.

Let v1, . . . , vn be all the successors of v in the graph induced by V ′. Thus
there are V ′-paths, vγi, in G ending with vi for each i 6 n. Let wi be the first
vertex of γi. We must have i 6= j implies wi 6= wj, since if wi = wj then either
wi /∈ V ′ in which case wi would not be V ′-weakly committing in G although
it is reachable from V ′, implying that V ′ is not weakly commitment-closed
in G, or wi ∈ V ′ and so vi = vj, contrary to our assumption. Thus v has n
successors w1, . . . , wn in G, proving the result.

Proposition 36 Let G = (V,E, β) be a cfg and V ′ ⊆ V . If V ′ is weakly
commitment–closed in G then the graph induced by V ′ from G is a cfg.

PROOF. Let the graph induced by V ′ from G be (V ′, E ′, β′). By Lemma 35,
the graph induced by G on V ′ satisfies conditions (1) and (2) of Definition 1.
Suppose that part (3) of Definition 1 does not hold, then there exist edges
(x, y) ∈ E ′ and (x, z) ∈ E ′ with y 6= z but β′(x, y) ∩ β′(x, z) 6= ∅. Assume
without loss of generality that T ∈ β′(x, y) ∩ β′(x, z). By Definition 11, there
exists y1 and z1 in V such that T ∈ β(x, y1) and T ∈ β(x, z1) and V ′–intervals
x, y1 . . . y and x, z1 . . . z. Since G is a cfg, and hence edges from the same
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predicate must be disjointly labelled, we must have y1 = z1. But the V ′–
paths y1 . . . y and z1 . . . z then contradict the hypothesis that V ′ is weakly
commitment–closed in G.

Proposition 37 Let G = (V,E, β) be a cfg and V ′ ⊆ V . If the graph induced
by V ′ from G is a cfg then V ′ is weakly commitment–closed in G.

PROOF. Suppose not, then there exists v /∈ V ′ reachable from V ′ but not
V ′–weakly committing in G. Therefore exists v′ ∈ V ′ and V ′–intervals

v′, v′′, . . . , v, . . . , l1 and v′, v′′, . . . , v, . . . , l2

with l1 6= l2. Let the graph induced by V ′ from G be (V ′, E ′β′). By Defini-
tion 11, the graph induced by V ′ from G will contain the edges {v′, l1} and
{v′, l2}. If v′ ∈ P (i.e., it is a predicate) then the two edges would not have
disjoint labelling, since β′(v′, l1)∩β′(v′, l2) ⊇ β(v′, v′′) 6= ∅. If v′ ∈ N (i.e., it is
a non–predicate), then in the induced graph a non–predicate would have two
successors. Both cases contradict the fact that the graph induced by V ′ from
G is a cfg.

The following three straightforward results show when a subset of the vertices
includes the necessary distinguished vertices that the graph induced on that
subset again belongs to the same restricted class.

Proposition 38 Let G = (V,E, β) be a {start}–cfg. V ′ is weakly commitment–
closed in G and start ∈ V ′ if and only if the graph induced by V ′ from G is a
{start}–cfg.

PROOF. This follows immediately from Propositions 36 and 37, and the
fact that if start ∈ V ′, then every vertex in V ′ is reachable from start in the
graph induced by V ′ from G, which is a consequence of Definition 11 and the
analogous assertion in G.

Proposition 39 Let G = (V,E, β) be an {end}–cfg. V ′ is weakly commitment–
closed in G and end ∈ V ′ if and only if the graph induced by V ′ from G is an
{end}–cfg.

PROOF. Similar to the proof of Proposition 38.

Proposition 40 Let G = (V,E, β) be a {start, end}–cfg. V ′ is weakly commitment–
closed in G and {start, end} ⊆ V ′ if and only if the graph induced by V ′ from
G is a {start, end}–cfg.
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PROOF. This is an immediate consequence of Propositions 38 and 39.

We have proven that if V ′ is weakly commitment–closed in G then the graph
induced from V ’ is a well formed cfg and conversely if the graph induced
from V ′ ⊆ V is a well–formed cfg then V ′ is weakly commitment–closed in
G. A set being weakly commitment–closed in G is thus an equivalent to the
graph induced by it from G being a well–formed cfg. In Section 7, we prove
that weak commitment–closedness generalises the property that V ′ is closed
under each of the weak forms of control dependence in the literature.

Theorem 41 Let G = (V,E, β) be a cfg and V ′ ⊆ V . The following are
equivalent.

(1) The graph induced by V ′ from G is a cfg.
(2) V ′ is weakly commitment–closed in G.
(3) The graph induced by V ′ from G is a weak projection of G.

PROOF. (1) =⇒ (2) by Proposition 37.
(2) =⇒ (3) by Proposition 36 and Proposition 18.
(3) =⇒ (1) because by definition a weak projection is a cfg.

We have thus shown that for any subset V ′ of the vertices of a cfg, G, V ′

being weakly commitment–closed in G is both necessary and sufficient for the
induced graph from V ′ not only to be well formed, but also to be a weak
projection.

Recall from Theorem 41 that the graph induced on a subset V ′ of the set of
vertices of a cfg G = (V,E, β) is a weak projection of G if and only if V ′

is weakly commitment–closed in G. In the next section we define the corre-
sponding property of strong commitment–closedness for strong projections.

5.4 Graphs induced by strongly commitment closed sets

In this section, we investigate graphs induced by strongly commitment–closed
sets. The main result of this section is that graph induced by V ′ from G is a
strong projection of G if and only if V ′ is strongly commitment–closed in G.

Lemma 42 If V ′ is strongly commitment–closed in G then V ′ is weakly-
commitment–closed in G.
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PROOF. Result follows from the fact that a strongly committing vertex is
weakly committing (Definition 32) and that a V ′–avoiding vertex is vacuously
V ′–weakly committing.

An example of strong commitment–closedness in terms of cfgs can be seen
in Figure 8. The smallest strongly commitment–closed set containing V ′ is
{start, p0, p1, g, h}. Unlike in the weak case (see G6(b) in Figure 6 ), vertex p1
is included, since k is avoiding and h is strongly committing.

Proposition 43 Let G = (V,E, β) be a cfg and let V ′ ⊆ V . If the graph
induced by V ′ from G is a strong projection of G and hence a cfg, then V ′ is
strongly commitment–closed in G.

PROOF. By Proposition 37, V ′ is weakly commitment–closed in G. Suppose
v /∈ V ′ is reachable from V ′ but v is not V ′–avoiding and v is not V ′–strongly
committing. Since v is reachable from V ′ there is a path ρ = v1 . . . vn−1vn
(vn = v) from v1 ∈ V ′ to v with v2, . . . , vn ∈ V \V ′. Since v is not V ′–avoiding
in G, there is a V ′–path vµk from v to some vertex k ∈ V ′. Since v is V ′–
weakly committing in G but not V ′–strongly committing in G there exists a
V ′–avoiding path vvn+1vn+2 . . . say.

Now, ρvn+1vn+2 . . . is a complete path and so by Proposition 22 there exists
a maximal walk ω = ω1ω2 . . . where ω̄i = vi. However, ω↓V ′ = ω1 and the
existence of the V ′–interval ρµk means that by Definition 11 there is an edge
(v1, k) in the graph induced by V ′ from G and if v1 is a predicate then ¯̄ω1 ∈
β(v1, v2) ⊆ β′(v1, k). Hence ω1 is a prefix of any walk ω1l . . ., where l̄ = k, i.e.,
it is not maximal which contradicts that the graph induced by V ′ from G is a
strong projection of G.

Proposition 44 Let G = (V,E, β) be a cfg and V ′ ⊆ V . If V ′ is strongly
commitment–closed in G then the graph induced by V ′ from G is a strong
projection of G.

PROOF. By Proposition 36, the graph induced by V ′ from G is a cfg and
then, by Proposition 18 the graph induced by V ′ from G is a weak projection
of G. Suppose it is not a strong projection. Then there exists a maximal walk
ω of G such that ω↓V ′ is a proper prefix of a maximal walk of the graph
induced by V ′ from G. This means that ω↓V ′ is finite, so write

ω↓V ′ = ω1, . . . , ωn.

Since w1 . . . wn is not maximal in the graph induced by V ′ from G, there
exists a walk w1 . . . wnw

′ in the graph induced by V ′ from G. There must exist
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a predicate p /∈ V ′ on a path between wn and w′ in G from which some paths
reach w′ ∈ V ′ and from which at least one path never re–enters V ′, since if
all paths in G re–enter V ′ from wn then w cannot be maximal in the graph
induced by V ′ from G. By definition, p is not strongly V ′ avoiding or not
strongly committing and hence V ′ is not strongly commitment–closed in G.

Theorem 45 Let G = (V,E, β) be a cfg and V ′ ⊆ V . The graph induced by
V ′ from G is a strong projection of G if and only if V ′ is strongly commitment–
closed in G.

PROOF. (⇒) Proposition 43.
(⇐) Proposition 44.

In Section 4, we defined weak and strong projections and in this section we
have given necessary and sufficient conditions for a subset, V ′, of vertices of
a cfg to induce weak and strong projections respectively. The conditions are
that V ′ is weakly commitment–closed in G and V ′ is strongly commitment–
closed in G respectively. In this section we prove that for any subset of vertices
V ′ of a cfg, there are unique minimal sets V ′′ and V ′′′ containing V ′ such that
V ′′ is weakly commitment–closed in G and V ′′′ is strongly commitment–closed
in G. This implies that for any subset of vertices V ′ of a cfg, there are unique
minimal sets V ′′ and V ′′′ containing V ′ such that the graphs induced from G
by V ′′ and V ′′′ are weak and strong projections of G respectively.

5.5 Existence and uniqueness of minimal weakly commitment–closed sets

Good slices are small slices. Given a cfg G = (V,E, β) and a slicing criterion
V ′ ⊆ V we want to find the smallest subset V ′′ of V containing V ′ such that
the graph induced from G by V ′′ is a weak projection of G. By Theorem 41,
V ′′ will be the smallest weakly commitment–closed set containing V ′. In this
subsection, we prove that such a set exists and is unique.

In order to do this we need the concept of a weakly deciding vertex. Informally,
a vertex is weakly deciding over a set V ′ if it decides between any two vertices
in V ′. It is called weak because the choice does not guarantee reaching an
element in V ′. Having made the choice, however, there will be at least one path
that reaches the vertex in V ′. The choice guarantees that the other interesting
vertex will definitely not be reached first.

Definition 46 (Weakly deciding vertices) Let G = (V,E) be a finite di-
rected graph and let V ′ ⊆ V . A vertex v ∈ V is V ′–weakly deciding in G if
and only if there exist two finite proper V ′–paths in G that both start at v and
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have no other common vertex. We write WDG(V ′) for the set of all V ′–weakly
deciding vertices in G.

It is possible for a vertex to be neither V ′–weakly committing in G, nor V ′–
weakly deciding in G. To see this, consider vertex start of G6(a) in Figure 6.
It is not {start, h, g}–weakly committing in G6(a) since h and g are both first
reachable from start, nor {start, h, g}–weakly deciding in G6(a) since all proper
V ′–paths from start contain p0 and are hence not disjoint.

There now follows a lemma which shows that V ′ is weakly commitment–closed
if and only if all V ′–weakly deciding vertices that are reachable from V ′ are
in V ′.

Lemma 47 (Weak commitment–closedness in terms of WD) Let G =
(V,E) be a finite directed graph and let V ′ ⊆ V . V ′ is weakly commitment–
closed in G if and only if all V ′–weakly deciding vertices in G that are reachable
from V ′ are in V ′.

PROOF. Suppose that V ′ is weakly commitment–closed in G and let v ∈
WDG(V ′)\V ′. Since v is V ′–weakly deciding in G there must exist V ′–paths
v...v′ and v...v′′ which share no common vertex after their common initial
vertex v. Therefore v is not V ′–weakly committing and because V ′ is weakly
commitment–closed in G, v cannot be reachable from V ′.

Conversely, let v /∈ V ′ be reachable from V ′ but not V ′–weakly committing,
so there exist V ′–paths v...v′ and v...v′′ for v′ 6= v′′. If w is the last common
vertex on these paths then w is reachable from V ′ and w...v′ and w...v′′ share
no common vertex after w and w 6= v′, w 6= v′′. Hence w is V ′–weakly deciding
in G.

There now follow a useful result stating that WD is monotonic.

Lemma 48 (WD is monotonic) Let G = (V,E) be a finite directed graph
and V1 ⊆ V2 ⊆ V , then

WDG(V1) ⊆ WDG(V2).

PROOF. Suppose there is a vertex v ∈ WDG(V1)\WDG(V2). Clearly there
are proper [v,mi] V1–paths γi in G, for vertices m1,m2 ∈ V1 ⊆ V2, which
share only v as a common vertex. Let δi be the prefix of γi ending at the first
vertex in V2 for each i; since v /∈ WDG(V2), each δi is a proper path from v
and the δi also share only v as a common vertex. Thus v ∈ WDG(V2), giving
a contradiction.
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Theorem 49 Let G = (V,E) be a finite directed graph and let V ′ ⊆ V .
Suppose that V ′ is not weakly commitment–closed in G. Then there is an edge
(p, r) in G such that p is reachable in G from V ′ with

(1) |Θ(G, V ′, r)| = 1 and
(2) |Θ(G, V ′, p)| > 2.

Furthermore, for any edge (p, r) satisfying (1) and (2), the vertex p lies in
every weakly commitment–closed subset of V containing V ′.

PROOF. Since V ′ is not weakly commitment–closed, there is a vertex p ∈
V \V ′ that is reachable in G from V ′ and is not V ′–weakly committing. Hence
there is a path p0 = p, p1 = r, . . . , pm ∈ V ′ in G. Choose p so that m is minimal.
Thus r is V ′–weakly committing and |Θ(G, V ′, r)| = 1 and |Θ(G, V ′, p)| > 2
follow from this. Now assume that an edge (p, r) is in G and satisfies the condi-
tions given and p is reachable in G from V ′, but there is a weakly commitment–
closed set W ⊇ V ′ not containing p. Since |Θ(G, V ′, r)| = 1, there is a path
p0 = p, p1 = r, . . . , pm ∈ Θ(G, V ′, r) in G, for some m > 1. In addition,
|Θ(G, V ′, p)| > 2 and so there is also a path q0 = p, q1, . . . , qn ∈ V ′\{pm} in
G for some n > 1. Since Θ(G, V ′, pi) = {pm} for each i > 1, no pi = qj unless
i = j = 0. Thus p ∈ WDG(V ′) ⊆ WDG(W ) by Lemma 48, and so W is not
weakly commitment–closed, giving a contradiction.

Thus we have shown if an edge (p, r) in V satisfies |Θ(G, V ′, r)| = 1 and
|Θ(G, V ′, p)| > 2, then p lies in every weakly commitment–closed superset of
V ′.

Theorem 50 Let G = (V,E) be a finite directed graph and let V ′ ⊆ V . There
exists a unique minimal weakly commitment–closed subset of V that contains
V ′.

PROOF. We now prove the uniqueness of minimal weakly commitment–
closed supersets of V ′ by induction on |V | − |V ′|. We may assume that V ′

is not weakly commitment–closed, hence by Theorem 49, there is an edge
(p, r) in V that satisfies |Θ(G, V ′, r)| = 1 and |Θ(G, V ′, p)| > 2, and such
that p lies in every weakly commitment–closed superset of V ′. If V ′ ∪ {p} is
weakly commitment–closed, then the uniqueness result follows immediately.
Otherwise, by the inductive hypothesis, there is a unique minimal weakly
commitment–closed superset of V ′∪{p}, and since every weakly commitment–
closed superset of V ′ must contain p, the result follows.
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5.6 Existence and uniqueness of minimal strongly commitment–closed sets

We now consider the analogous problem of proving the existence of the mini-
mal strongly commitment–closed superset of a given set. We prove this to be
well–defined in Theorem 53. In order to do this, we first need to define the
function Γ which gives the set of vertices lying on complete paths not passing
through V ′.

Definition 51 (Γ) Let G = (V,E) be a finite directed graph and let V ′ ⊆ V .
We define Γ(G, V ′) to be the set of all x ∈ V that lie on a complete path in G
which does not pass through V ′.

Definition 52 (Θ) Let G = (V,E) be a finite directed graph and let V ′ ⊆ V .
Let H be the cfg obtained from G by deleting all edges (v′, v) with v′ ∈ V ′.
For any u ∈ V , we define Θ(G, V ′, u) to be the set of vertices in V ′ that are
reachable in H from u.

Note that the elements in V ′ reachable from elements in V \V ′ in H are the
elements in V ′ first reachable from elements in V \V ′ in G.

Theorem 53 Let G = (V,E) be a finite directed graph and let V ′ ⊆ V . If V ′

is not strongly commitment–closed then there is an edge (p, r) in G with:

(1) p ∈ V \V ′.
(2) p is reachable in G from V ′.
(3) |Θ(G, V ′, r)| = 1.
(4) r /∈ Γ(G, V ′).
(5) Either |Θ(G, V ′, p)| > 2 or p ∈ Γ(G, V ′).

Furthermore, for any edge (p, r) in G satisfying these conditions, the vertex p
lies in every strongly commitment–closed subset of V containing V ′. From this,
we show it follows that there is a unique minimal strongly commitment–closed
superset of V ′.

PROOF. Since V ′ is not strongly commitment–closed, there is a vertex p ∈
V \V ′ that is reachable in G from V ′ that is neither V ′–strongly committing
nor V ′–avoiding in G. Hence there is a path p0 = p, p1 = r, . . . , pm ∈ V ′ in
G. Choose p so that m is minimal. Thus r is V ′–strongly committing and
the conditions involving the functions Θ and Γ follow from this. Now assume
that there is an edge (p, r) in G that satisfies the conditions given, but that
there is a strongly commitment–closed set W ⊇ V ′ not containing p. Since
|Θ(G, V ′, r)| = 1, there is a path p0 = p, p1 = r, . . . , pm ∈ Θ(G, V ′, r) in G, for
some m > 1. From the condition on p, either of two possibilities may occur.
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• |Θ(G, V ′, p)| > 2 and so there is also a path q0 = p, q1, . . . , qn ∈ V ′\{pm} in
G for some n > 1. Since Θ(G, V ′, pi) = {pm} for each i > 1, no pi = qj unless
i = j = 0. Since {pm, qn} ⊆ V ′ ⊆ W , but p = p0 = q0 /∈ W , there exist
minimal k, l > 1 such that pk ∈ W and ql ∈ W , and so p ∈ WDG(W ), and so
W is not weakly commitment–closed, and hence not strongly commitment–
closed, giving a contradiction.
• p ∈ Γ(G, V ′) and so there is a complete path q0 = p, q1, . . . in G such that

every qj /∈ V ′, and since r = p1 /∈ Γ(G, V ′), no pi = qj unless i = j = 0.
Let k > 1 be minimal such that pk ∈ W . If every qi /∈ W , then p is not
W–strongly committing, giving a contradiction, and if qk ∈ W for minimal
l > 1, then there is a [p, pk] W–path and a [p, ql] W–path in G, and so
W is not weakly commitment–closed, and hence not strongly commitment–
closed, giving a contradiction.

Thus we have shown if an edge (p, r) in V satisfies conditions (1)–(5), then p
lies in every strongly commitment-closed superset of V ′.

Theorem 54 Let G = (V,E) be a finite directed graph and let V ′ ⊆ V . There
exists a unique minimal strongly commitment–closed superset of V ′ in G.

PROOF. We now prove the uniqueness of minimal strongly commitment–
closed supersets of V ′ by induction on |V | − |V ′|. We may assume that V ′

is not strongly commitment–closed, hence there is an edge (p, r) in V that
satisfies conditions (1)–(5) of Theorem 53, and such that p lies in every strongly
commitment–closed superset of V ′. If V ′∪{p} is strongly commitment–closed,
then the uniqueness result follows immediately. Otherwise, by the inductive
hypothesis, there is a unique minimal strongly commitment–closed superset
of V ′ ∪ {p}, and since every strongly commitment–closed superset of V ′ must
contain p, the result follows.

In this section we have proved that for any subset of vertices V ′ of a cfg,
there are unique minimal weak and strong commitment closed sets containing
V ′ and hence unique minimal weak and strong projections containing V ′. In
Section 6, we give low polynomial algorithms for computing these sets.

6 Algorithms for computing minimal weakly and strongly commitment–
closed sets

In this section we define algorithms for computing the minimal weakly and
strongly commitment–closed supersets of a set. (We showed that these sets ex-
ist in the previous section.) Since weakly and strongly commitment–closedness
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is a necessary and sufficient condition for the induced graph to be a weak/strong
projection, in effect, we have algorithms for producing minimal weak/strong
projections (slices).

Formally, given a cfg G = (V,E, β) and a subset V ′ ⊆ V , we wish to compute
the minimal superset of V ′ which is weakly or strongly commitment–closed. As
we will show in this section, this can be done with worst–case time complexity
O(|G|4), where |G| = |V |+|E|. For cfgs, vertices have a maximum out–degree
of 2, so O(|E|) = O(|V |) giving O(|G|) = O(|V |). This gives our algorithms
a worst–case time complexity O(|V |4). This is of a very similar order to the
worst–case time complexity of the algorithms for computing the new control
dependences of Ranganath et al. which they give as O(|V |3×lg(|V |)×∑

Tn) =
O(|V |4 × lg(|V |)). (Since they define Tn to be the number of successors of
vertex, n so O(

∑
Tn) = O|V |)).

The algorithms we present here are not intended to replace current algorithms
for computing sets closed under previous known forms of control dependence,
since for cfgs where the previous forms apply the results will be identical.
This follows immediately from the results of Sections 7 and 8.

We are not convinced, however, that in practice, our algorithms are any more
efficient (or less) than those of Ranganath et al.. We are merely demonstrating
the existence of low polynomial–time algorithms for computing the required
sets for the more general form of cfgs used in this paper. We suspect, however,
that improvements in the efficiency of the algorithms presented here exist. This
will be the subject of future work.

Definition 55 Let G = (V,E) be a graph. We define |G| = |V |+ |E|.

The computation of Θ(G, V ′, u) (Definition 52) has time complexity O(|G|2),
since removing the appropriate edges from G to obtain H takes linear time,
and the subsequent reachability problem has time complexity O(|G|2).

For cfgs, since the maximum out–degree for each vertex is two, we have
O(|G|) = O(|V |). The computation of Θ(G, V ′, u), thus has time complexity
O(|V |2).

6.1 An algorithm to compute the minimal weakly commitment–closed super-
set of V ′ in G

Let G = (V,E, β) be a cfg and let V ′ ⊆ V . We require an algorithm for
computing the minimal weakly commitment–closed superset of V ′ in G. Our
algorithm is indicated by Theorem 49, which gives a condition stated in terms
of the function Θ on vertices that must be added to the set V ′ in order to obtain
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a weakly commitment–closed set. We now give an algorithm for computing the
minimal weakly commitment–closed superset of V ′ in G which we prove has
time–complexity O(|V |4). Let G = (V,E, β) be a cfg and let V ′ ⊆ V . To
compute the minimal weakly commitment–closed superset of V ′ in G proceed
as follows:

Algorithm 56 (1) Assign X = V ′.
(2) Choose any edge (p, v) in G with p reachable from V ′ and such that
|Θ(G,X, v)| = 1 and |Θ(G,X, p)| > 2 hold, and assign X = X ∪ {p}. If
no such edge (p, v) exists then STOP.

(3) GOTO 2.

Theorem 57 Algorithm 56 has time complexity O(|V |4), and the value of
the set X when STOP is reached is the minimal weakly commitment–closed
superset of V ′ in G.

PROOF. Step (2) cannot execute twice with the same value of p and is
therefore executed at most |V | times. For each execution of (2), not more than
|G| edges are tested, and for each testing, the time taken is determined by Θ
and thus is bounded by O(|V |2), proving the total O(|V |4) time complexity.
By Theorem 49, X is the unique smallest weakly commitment–closed set in
G containing V ′ when STOP is reached.

Later in the paper we will prove that weak commitment–closedness subsumes
all the previous definitions of weak control dependence in the literature. In
other words, the problem of computing the set of vertices that transitively
control a set of vertices (whichever definition in the literature we use) can
be reduced to computing weak commitment–closed sets. Furthermore weak
commitment–closedness is more general, in the sense that it is defined for
graphs for which previous definitions of control dependence are not defined.

6.2 An algorithm to compute the minimal strongly commitment–closed su-
perset of V ′ in G

We now consider the analogous problem of computing the minimal strongly
commitment–closed superset of a given set. First we need an algorithm for
computing Γ(G, V ′) (Definition 51): the set of all x ∈ V that lie on a complete
path in G which does not pass through V ′.

Algorithm 58 (Algorithm for computing Γ(G, V ′)) (1) Assign X = V ′.
(2) Choose any edge (y, x) in G with x ∈ X, y /∈ X and y not an incomplete

predicate vertex. If no such edge exists, then STOP.
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(3) Delete the edge (y, x) from G. If y is a predicate, convert it to a non–
predicate (so in future iterations it is not considered incomplete).

(4) If there are no remaining edges (y, z) with z /∈ X, then assign X =
X ∪ {y}.

(5) GOTO (2).

Theorem 59 In Algorithm 58, the final value of V \X is precisely Γ(G, V ′),
and the algorithm has time complexity O(|G|2) = O(|V |2).

PROOF. Each execution of (3) except the last deletes an edge from G,
hence the number of iterations is bounded by O(|G|). Also, lines (2)–(4) have
time complexity bounded by O(|G|), proving the total time complexity bound
given. For any execution of (2) and for the current value of X just before this
execution, the edges deleted from G and the vertices added to X are not used
in any complete path using only the vertices in V \X. Thus the set of all such
complete paths does not change throughout the whole execution, even as X
changes. Since at the end of the execution there are no edges from V \X to
X, the set Γ(G, V ′) of vertices occurring on these paths is V \X, proving the
Theorem.

Let G = (V,E) be a finite directed graph and let V ′ ⊆ V . To compute the
minimal strongly commitment–closed superset of V ′, now proceed as follows:

Algorithm 60 (1) Assign X = V ′.
(2) Find an edge (p, r) in G such that p is reachable in G from X and satis-

fying:
(a) |Θ(G,X, r)| = 1 and
(b) r /∈ Γ(G,X) and
(c) |Θ(G,X, p)| > 2 or p ∈ Γ(G,X).
If no such edge exists, then STOP, else assign X = X ∪ {p}.

(3) GOTO (2).

Theorem 61 Algorithm 60 computes unique minimal strongly commitment–
closed superset of V ′ and has worst–case time complexity O(|V |4).

PROOF. Both parts of the proof are similar to their analogues in the proof of
Theorem 57, with Theorem 53 used in place of Theorem 49, and with Theorem
59 used to bound the time complexity.
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6.3 Improvements in the algorithms

Although, it is beyond the scope of this paper, it is worth mentioning that the
worst–case O(|V |4) time complexity bound of Algorithms 56 and 60 can quite
possibly be improved upon.

Of course, faster algorithms can be obtained by placing additional restric-
tions on the graph G. However, as weak and strong commitment–closeness
are generalisations of existing forms of control dependence the existing faster
algorithms can be used instead in such simpler cases.

7 The weak forms of control dependence

7.1 Summary

In the literature, there are three distinct forms of control dependence which
we call weak because, as we show in this section, vertex sets closed under them
induce weak projections. They are:

• W-controls−−−−−−→: the control dependence of Weiser [34],

• F-controls−−−−−→: the control dependence of Ferrante et al. [17], and

• WOD−−−→: Amtoft’s weak order dependence [3].

There is also Podgurski and Clarkes’ strong control dependence [27], but this
is merely a paraphrasing of Weiser’s.

The main results of this section give the relationship between sets closed
under the weak forms of control dependence mentioned above and weakly
commitment–closed sets. These can be summarised as follows:

Lemma 74 Let G = (V,E) be an {end}–graph. V ′ is closed under
F-controls−−−−−→

if and only if V ′ is closed under
W-controls−−−−−−→.

Lemma 75 Let G = (V,E) be a {start, end}–graph with {start, end} ⊆ V ′ ⊆
V . If V ′ is weakly commitment–closed inG then V ′ is closed under

W-controls−−−−−−→.

Lemma 77 Let G = (V,E) be an {end}–graph with V ′ ⊆ V . If V ′ is closed

under
W-controls−−−−−−→ then V ′ is weakly commitment–closed in G.

Lemma 78 Let G = (V,E) be a finite directed graph with V ′ ⊆ V . If V ′ is

closed under
WOD−−−→ then V ′ is weakly commitment–closed in G.
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Lemma 79 Let G = (V,E) be a {start}–graph with start ∈ V ′ ⊆ V . If V ′ is

weakly commitment–closed in G then V ′ is closed under
WOD−−−→.

From these, we can prove our main result which shows that, indeed, all weak
forms of control dependence in the literature induce weak projections. These
forms of control dependence have thus been semantically characterised for the
first time. The characterisation is as follows:

Theorem 62 (Main theorem for weak control dependence)

(1) If G is a {start, end}–cfg with {start, end} ⊆ V ′, then V ′ is closed under
W-controls−−−−−−→ if and only if the induced graph induced by V ′ from G is a weak
projection of G.

(2) If G is a {start, end}–cfg with {start, end} ⊆ V ′, then V ′ is closed under
F-controls−−−−−→ if and only if the induced graph induced by V ′ from G is a weak
projection of G.

(3) If G is a {start}–cfg with start ∈ V ′ then V ′ is closed under
WOD−−−→ if and

only if the induced graph induced by V ′ from G is a weak projection of G.

PROOF. (1) follows from Lemmas 74, 75, 77 and Theorem 41. (2) follows
from (1) and Lemma 74 and, (3) follows from Lemmas 78 and 79 together
with Theorem 41.

It can be seen from Theorem 62, that each form of weak control dependence
requires a restriction to the cfg for it to be characterised by a weak projection.
As Theorem 41 showed, weak commitment closedness, on the other hand,
requires no such restriction and can thus be more generally applied.

7.2 Weiser’s control dependence

In order to define Weiser’s control dependence, we first need forward domina-
tion.

Definition 63 (Forward domination) Let G = (V,E) be an {end}–graph
and let v, w ∈ V . If every path from v to end passes through w then w forward
dominates v.

Forward domination is the terminology of Podgurski and Clarke. Weiser calls
it inverse domination. Ferrante et al. [17] call it post domination.
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v1

v2

v

w1

w2

Fig. 11. Ferrante et al. control dependence is not transitive: v
F-controls−−−−−−→ v1 and

v1
F-controls−−−−−−→ w1 but v

F-controls−−−−−−→ w1 is false.

It is well known [27, Theorem 1] that if v 6= end is a vertex in a cfg, then the
set of all vertices that forward dominate v always occur in the same order on
any path from v to end. We call the first such vertex apart from v the nearest
forward dominator of v.

Definition 64 (ND) Let G = (V,E) be an {end}–graph and v ∈ V . ND(v) is
the set of vertices which lie on a path from v to its nearest forward dominator
b, excluding v and b themselves.

Implicit in this is Weiser’s definition of control dependence:

Definition 65 (
W-controls−−−−−−−→) Let G = (V,E) be an {end}–graph and v, w ∈ V ,

then v
W-controls−−−−−−→ w if and only if w ∈ ND(v).

Note that in v cannot control itself using Weiser’s definition.

7.3 The control dependence of Ferrante et al.

In defining the program dependence graph, control dependence was once again
redefined [17].

Definition 66 (
F-controls−−−−−−→) Let G = (V,E) be an {end}–graph, then v

F-controls−−−−−→
w if and only if v is not forward dominated by w, and there exists a path π
from v to w such that for all vertices z occurring on π apart from v is forward
dominated by w.

Ferrante et al. control dependence is not transitive, as is demonstrated by the

example in Figure 11 where v
F-controls−−−−−→ v1 and v1

F-controls−−−−−→ w1 but v does not
control w1.

Lemma 67, in effect, allows an alternative definition of Ferrante et al. control
dependence, which is often used:
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Lemma 67 Let G = (V,E) be an {end}–graph and v, w ∈ V . The vertex

v
F-controls−−−−−→ w if and only if v has immediate successors v1, v2 such that w

forward dominates v1 but not v2.

PROOF. Suppose that w is Ferrante control dependent on v. Then there is
a path π from v to w on which all vertices except v are forward dominated
by w, and there is a path vµend which does not pass through w. Let v1 be
the second vertex of π then vµend also does not pass through v1 because w
forward dominates v1. Therefore the first vertex of µ must be some v2 6= v1
and so v has immediate successors v1, v2 with w forward dominating v1 but
not v2, as required.

Conversely, let v have immediate successors v1, v2 such that w forward domi-
nates v1 but not v2. Since w forward dominates v1, and end is reachable from
v1, there is a path v1ρend on which w occurs, and which hence has a prefix
v1νw on which w does not occur except at the end. Thus every vertex on v1ν
is forward dominated by w. However since w does not forward dominate v2,
and there is an edge (v, v2) and w 6= v, w does not forward dominate v either,

and thus v
F-controls−−−−−→ w as required.

7.4 Amtoft’s weak–order dependence

Amtoft [3,30] observes that the traditional cfg is not well adapted to handle
modern programming constructs which may intentionally fail to terminate,
e.g., reactive systems. Amtoft addresses this problem by define weak order

dependence (
WOD−−−→) as an extension of Ferrante et al. control dependence to

handle cfgs which are not necessarily {end}–graphs.

Definition 68 (
WOD−−−→) Let G = (V,E) be a finite directed graph with v, b, c ∈

V . Then v
WOD−−−→ b, c if and only if:

(1) There is a path from v to b not containing c.
(2) There is a path from v to c not containing b.
(3) v has an immediate successor a such that either
• b is reachable from a, and all paths from a to c contain b; or
• c is reachable from a, and all paths from a to b contain c.
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γ2

α1

α2

γ1

l2

m2

m1

l1

v

Fig. 12. Lemma 69: If v weakly decides between an element of V ′ and an ele-
ment of WDG(V ′)\V ′ then v ∈ WDG(V ′). PROOF: There exist two finite proper
{l1, l2}–paths, vα1l1 and vα2l2 in G that both start at v and have no other common
vertex. Choose l1 ∈ V ′ and l2 ∈WDG(V ′)\V ′ such that |α1|+ |α2| is minimal where
α1l1 and α2l2 are disjoint. By definition of WD, there are two finite proper V ′–paths
l2γ1m1 and l2γ2m2 in G with {m1,m2} ⊆ V ′ such that γ1m1 and γ2m2 are disjoint.
Furthermore we can assume that l2 is not in either γ1 or γ2 (since if it is we can
simply create smaller paths by removing the cycles.)

7.5 The relationship between controlling predicates and weakly deciding pred-
icates

There is a strong connection between sets closed under the different forms of
weak control dependence and the sets closed under WDG, i.e., those sets V ′

for which WDG(V ′) ⊆ V ′. In order to prove the main results of this section we
first prove an important property of WDG which we refer to as idempotence.
This means that:

WDG(V ′ ∪WDG(V ′)) ⊆ V ′ ∪WDG(V ′).

This is equivalent to saying V ′ ∪WDG(V ′) is closed with respect to WDG i.e.,
if we take the set of vertices that are weakly deciding on V ′ ∪WDG(V ′) we
will not get any new elements. We need a preliminary lemma which we use to
prove idempotence of WDG.

Lemma 69 Let l1 ∈ V ′ and l2 ∈ WDG(V ′)\V ′. Then

WDG({l1, l2}) ⊆ WDG(V ′).

PROOF. There exist two finite proper {l1, l2}–paths, vα1l1 and vα2l2 in G
that both start at v and have no other common vertex. Choose l1 ∈ V ′ and
l2 ∈ WDG(V ′)\V ′ such that |α1| + |α2| is minimal where α1l1 and α2l2 are
disjoint. By definition of WD, there are two finite proper V ′–paths l2γ1m1 and
l2γ2m2 in G with {m1,m2} ⊆ V ′ such that γ1m1 and γ2m2 are disjoint. (See
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σ
τ

α1

ν
µ l2
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m2

v

w

w

m1

Fig. 13. Proof of Lemma 69 Part (1):Without loss of generality, assume γ1 contains
an element of α2. Let w be the last vertex in α2 which also occurs in γ1. Thus we
may write α2 = µwν and γ1 = σwτ , where no vertex in ν occurs in γ1.

γ2

α1

νµ

τ

l2

l1

v

w

m2

m1

Fig. 14. Proof of Lemma 69 Part (1): The paths τ and ν are disjoint since no vertex
in ν occurs on γ1 and τ is inside γ1. Also τ and γ2 are disjoint because τ is inside
γ1, and γ1 and γ2 are disjoint. Finally l2 /∈ τ because τ is inside γ1.

γ2

τ

α2

µ

l2

l1

v

m2

z

z

m1

Fig. 15. Proof of Lemma 69 Part 2(b): Now assume that α1 and one of the γi have
a common vertex. Let z be the first vertex in α1 that shares an element with the
γi. Again, without loss of generality, assume z ∈ γ1. i.e., α1 = µzν and γ1 = σzτ ,
where no vertex in µ occurs in either of the γi.
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Fig. 16. Proof of Lemma 69, part 2 (b): Part (a) has shown that zτ , does not share
a vertex with α2l2γ2, (since zτ is a path within γ1, l2 /∈ γ2 and the γi are disjoint).
Also, because of the choice of z, the only vertex in shared between α2l2γ2 and µ, is
v. Therefore v ∈WDG(V ′) witnessed by the paths µzτ and α2l2γ2, as required.

Figure 12). Furthermore we can assume that l2 is not in either γ1 or γ2 (since
if it is we can simply create smaller paths by removing the cycles).

(1) We first prove that both the γi are disjoint from α2. Suppose not, then
without loss of generality assume that γ1 contains an element of α2. Let w
be the last vertex in α2 which also occurs in γ1. Thus we may write α2 =
µwν and γ1 = σwτ , where no vertex in ν occurs in γ1 (see Figure 13).

From Figure 14, we see that the paths τ and ν are disjoint since no
vertex in ν occurs on γ1 and τ is inside γ1. Also τ and γ2 are disjoint
because τ is inside γ1, and γ1 and γ2 are disjoint. Finally l2 /∈ τ because
τ is inside γ1.

So w ∈ WDG({m1,m2}) witnessed by the paths wτm1 and wνl2γ2m2.
m1 and m2 are in V ′ so by Lemma 48, w ∈ WDG(V ′). Also γ1 is disjoint
from V ′ so w /∈ V ′ since w ∈ γ1. So w ∈ WD(V ′, G)\V ′ just like l2.

So could have chosen w instead of l2 with the required property and
since the length of µ is less than the length of α2 contradicting our choice
of l2. So both the γi are disjoint from α2.

(2) We now prove that v ∈ WDG(V ′).
(a) If α1 and neither of the paths γi have a common vertex, then, again by

Lemma 48, since {l1,m1} ⊆ V ′, v ∈ WDG(V ′) witnessed by the paths
vα1l1 and vα2l2γ1m1 as required where, without lost of generality, we
assume that l1 6= m1.

(b) Now assume that α1 and one of the γi have a common vertex. Let z
be the first vertex in α1 that shares an element with the γi. Again,
without loss of generality, assume z ∈ γ1. i.e., α1 = µzν and γ1 =
σzτ , where no vertex in µ occurs in either of the γi (see Figure 15).

Part (a) has shown that zτ , does not share a vertex with α2l2γ2,
(since zτ is a path within γ1, l2 /∈ γ2 and the γi are disjoint). Also,
because of the choice of z, the only vertex in shared between α2l2γ2
and µ, is v. Therefore v ∈ WDG(V ′) witnessed by the paths µzτ and
α2l2γ2, (see Figure 16) as required.
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Lemma 70 (WDG is idempotent) Let G be a cfg with vertex set V and
let V ′ ⊆ V . Write M = V ′ ∪WDG(V ′). Then WDG(M) ⊆M .

PROOF. Let v ∈ WDG(M)\V ′. Thus there are [v, li] M–paths αi in G for
i = 1, 2 with each li ∈ M which do not have a common vertex apart from
the initial one, v. We may assume that the sum of the lengths of the paths
αi is minimal. We will show that v ∈ WDG(V ′), thus proving the Lemma. We
consider three cases:

(1) If both l1, l2 ∈ V ′ then clearly v ∈ WDG(V ′), as required.
(2) If l1 ∈ V ′ and l2 ∈ WDG(V ′)\V ′ then the result follows immediately from

Lemma 69.
(3) If both l1, l2 ∈ WDG(V ′)\V ′ (see Figure 17) then we prove first that α2

and γ11 are disjoint.
Suppose not and let w be the last element of α2 which shares an ele-

ment with γ11. Therefore w weakly decides between m11 and l2 and hence
by Lemma 69, w ∈ WDG(V ′). This contradicts that α2 is an M–path.
Therefore α2 and γ11 are disjoint which means that v weakly decides
between m11 and l2 and hence, again by Lemma 69, v ∈ WDG(V ′) as
required.

γ22

γ21

α1

α2

γ12

γ11

l2

l1

m21

m22

m11

m12

v

Fig. 17. Proof of Lemma 70.

Having proved that WDG is idempotent, we are now in a position to prove the
main results of this section.
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7.6 Characterisation of sets closed under different weak forms of control de-
pendence

The following theorem in essence has already appeared [7]. We restate and
prove it here for completeness.

Lemma 71 Let G = (V,E) be an {end}–graph and let p, v ∈ V with p 6= v,

then p
F-controls∗−−−−−−→ v if and only if p is {v, end}–weakly deciding in G.

PROOF. Suppose that p
F-controls∗−−−−−−→ v. Thus there is a sequence v = p0, . . . , pm =

p with m > 1 such that pi
F-controls−−−−−→ pi−1. We prove p ∈ WDG({v, end}) by

induction on m.

If m = 1 then p
F-controls−−−−−→ v. Since end is reachable from every vertex, by

Theorem 67, p has immediate successors p1, p2 such that there is a [p1, v] path
α1v containing v only at the end and a [p2, v] path α2end not containing v, and
every path from p1 (and hence from any vertex in α1) to end passes through v.
Thus no vertex occurs on both paths α1v and α2end, hence p ∈ WDG({v, end})
follows.

If m > 1, the inductive hypothesis gives us

pm−1 ∈ WDG({v, end}),

and since pm
F-controls−−−−−→ pm−1, we have just shown that

p = pm ∈ WDG({pm−1, end})

follows. Thus by Lemma 48, we may replace {pm−1, end} by its superset

WDG({v, end}) ∪ {v, end}

to get

p ∈ WDG(WDG({v, end}) ∪ {v, end})
⊆ WDG({v, end}) ∪ {v, end}

by Lemma 70. Since clearly p /∈ {v, end}, the result p ∈ WDG({v, end}) follows,
as required.

Conversely, suppose that w ∈ WDG({v, end}) then there are paths wα1v and

wα2end in V which are disjoint other than w. We will prove w
F-controls∗−−−−−−→ v

by induction on the length of the path α1. If end is not reachable in V \{v}
from any vertex on α1, then w

F-controls−−−−−→ v is immediate. Thus we may write
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Fig. 18. Lemma 72.

α1 = µuν where there is a path uρend in V that does not pass through v.
Assume u is the last vertex on α1 from which end is reachable in V \{v}, and
so ν has no vertex in common with α2. Therefore ρ and ν have no common

vertex, and so u ∈ WDG({v, end}) and hence by induction u
F-controls∗−−−−−−→ v.

Finally, w ∈ WDG({u, end}) and hence by induction w
F-controls∗−−−−−−→ u and thus

w
F-controls∗−−−−−−→ v.

Lemma 72 Let G = (V,E) be an {end}–graph, then p
W-controls−−−−−−→ v if and only

if p is {v, end}–weakly deciding in G.

PROOF. Let u be the nearest forward dominator of p in G. Suppose that
v ∈ ND(p). Then there is a path pµvνu on which u does not occur except at
the end, and so v does not forward dominate p, hence there is also a path vσu
not passing through v (see Figure 18).

If every path from p to u shares a vertex with µ then v forward dominates
u and so u is not p’s nearest forward dominator. Now, u forward dominates
every vertex occurring on µv because otherwise u would not forward dominate
p. Since end is reachable from u there is a path uτend with τend not passing
through u or, hence, any vertex forward dominated by u. Thus the paths pµv
and pσuτend have no common vertex except for p, and so p is {v, end}–weakly
deciding in G..

Conversely, suppose that p is {v, end}–weakly deciding in G. Then there are
paths pµend and pνv which share only p as a common vertex. There is also
a path vπend. Clearly u occurs on both paths pµend and pνvπend, and the
‘non-sharing’ property implies that u occurs on πend, proving v ∈ ND(p).

Lemma 73 Let G = (V,E) be an {end}–graph and let p, v ∈ V with p 6= v,

then p
F-controls∗−−−−−−→ v if and only if p

W-controls−−−−−−→ v.

PROOF. By Theorem 71 p
F-controls∗−−−−−−→ v if and only if p is {v, end}–weakly

deciding in G. By Lemma 72 p is {v, end}–weakly deciding in G if and only if
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end

v1

v2

v

Fig. 19. Necessity that start ∈ V ′ in Theorem 75: Here v controls both v1 and v2,
so {v1, v2} is not closed under control dependence, but {v1, v2} is weakly commit-
ment–closed in G

p
W-controls−−−−−−→ v.

From Lemma 73, it now follows immediately that:

Lemma 74 Let G = (V,E) be an {end}–graph and let V ′ ⊆ V . V ′ is closed

under
F-controls−−−−−→ if and only if V ′ is closed under

W-controls−−−−−−→.

7.7 Sets closed under weak forms of control dependence and weak commit-
ment

Lemma 75 Let G = (V,E) be a {start, end}–graph and let {start, end} ⊆
V ′ ⊆ V .

If V ′ is weakly commitment–closed in G then V ′ is closed under
F-controls−−−−−→ (and

by Lemma 74,
W-controls−−−−−−→).

PROOF. Suppose not, then, by Theorem 67, there are vertices v, w with

v ∈ V \V ′ and w ∈ V ′ such that v
F-controls−−−−−→ w. Thus v has distinct immediate

successors z1, z2 such that there are paths z1ρ1w and z2ρ2end, where w does
not occur on either ρi and end is not reachable in V \{w} from z1. Thus v is
{end, w}–weakly deciding in G. By Lemma 48 v is V ′–weakly deciding in G.
But v is reachable from start ∈ V ′ therefore by Lemma 47, V ′ is not weakly
commitment–closed in G.

Note that the condition that start ∈ V ′ really is necessary, as the example in
Figure 19 shows.

Furthermore, the condition that end ∈ V ′ cannot be dispensed with. In Fig-
ure 20, let V ′ = {start, w}. V ′ is weakly commitment–closed in G but v controls
w so V ′ is not closed under control dependence.
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start end
w

v

Fig. 20. Necessity that end ∈ V ′ in Theorem 75: Here if V ′ = {start, w} then V ′ is
weakly commitment–closed in G but v controls w, so V ′ is not closed under control
dependence.

Lemma 76 Let G = (V,E) be an {end}–graph and let V ′ ⊆ V . Suppose that
w ∈ V \V ′ ∩WDG(V ′). Then there exists w1 ∈ V \V ′ and v ∈ V ′ such that w1

is {v, end}–weakly deciding in G.

PROOF. Since w ∈ WDG(V ′), for i ∈ {1, 2} there are proper V ′–paths wρizi
for vertices zi such that no vertex lies on both paths ρizi. There is also a
path z1σend through G which does not pass more than once through z1. By
replacing z1 by z2 if necessary, and using a suffix of σend, we may assume also
that σend does not pass through z2. If no vertex on σend also occurs on ρ2,
then the conclusion follows for w = w1 and v = z2 by examining the paths
wρ1z1σend and wρ2z2. Otherwise we may write ρ2 = αw1β and σ = τw1ω,
where w1 ∈ V and no vertex occurs on both β and ω, and the conclusion again
follows for v = z2 by examining the paths w1βz2 and w1ωend.

Lemma 77 Let G = (V,E) be an {end}–graph and let V ′ ⊆ V .

If V ′ closed under
F-controls−−−−−→ then V ′ is weakly commitment–closed in G.

PROOF. Suppose that V ′ is not weakly commitment–closed in G, then by
Lemma 47 V \V ′ contains an element of WDG(V ′). By Lemma 76 there exists
w̄ ∈ V \V ′ and v ∈ V ′ such that z ∈ WDG({v, end}), and hence by Theorem 71

z
F-controls∗−−−−−−→ v. Hence V ′ is not closed under

F-controls−−−−−→.

Lemma 78 Let G = (V,E) be a finite directed graph and let V ′ ⊆ V .

If V ′ is closed under
WOD−−−→ then V ′ is weakly commitment–closed in G.

PROOF. Suppose not, then there exists x ∈ V ′ which has an immediate
successor y ∈ V \V ′ which is not weakly–committing. Therefore there exist
proper V ′–paths yα1w1 and yα2w2 for distinct vertices w1 6= w2. Let Ω be
the set of all vertices from which w2 is reachable in V \{w1}; thus y ∈ Ω, but
w1 /∈ Ω. Thus we may write yα1w1 = βvγw1, where v ∈ Ω and no vertex in

γw1 lies in Ω. Hence v
WOD−−−→ w1, w2 which contradicts that V ′ is closed under

weak order dependence.
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Fig. 21. Theorem 79.

Lemma 79 Let G = (V,E) be a {start}–graph with start ∈ V ′.
If V ′ is weakly commitment–closed in G then V ′ is closed under

WOD−−−→.

PROOF. Suppose that b, c ∈ V ′ and v
WOD−−−→ b, c holds for v ∈ V . We will

assume that v /∈ V ′ and deduce a contradiction. From the definition of weak
order dependence and by interchanging b and c if necessary, there are paths
vβb and vγc such that b does not occur on γc, nor c on βb, and all paths
from the first vertex of βb to c pass through b before reaching c, which implies
that no vertex occurs on both βb and γc. See Figure 21. So v ∈ WDG(V ′)\V ′.
Vertex v is reachable from start ∈ V ′ contradicting the assumption that V ′ is
weakly commitment–closed in G (by Lemma 47).

Note that the condition that start ∈ V ′ really is necessary: in Figure 19 v
WOD−−−→

v1, v2 so {v1, v2} is not closed under
WOD−−−→ but {v1, v2} is weakly commitment–

closed in G.

We have shown that all weak forms of control dependence in the literature are
essentially the same: vertex sets closed under them all induce weak projections.
We may call any relation on vertex sets that has this property weak control

dependence. So
W-controls−−−−−−→,

F-controls−−−−−→ and
WOD−−−→ are all examples of weak control

dependence. In the next section, we turn our attention to the strong forms of
control dependence.

8 The strong forms of control dependence

8.1 Summary

In the literature, there are two distinct forms of control dependence which we
call strong because, as we show in this section, vertex sets closed under them
induce strong projections. These are:

50



• the combination of
NTSCD−−−−→ and

DOD−−−→ of Ranganath et al. [30].

• PC-weak−−−−−→, the weak control dependence of Podgurski and Clarke [27].

The main results of this section give the relationship between sets closed un-
der the strong forms of control dependence mentioned above and strongly
commitment–closed sets. These can be summarised as follows:

Lemma 87 Let G = (V,E, β) be a complete cfg. If V ′ ⊆ V is closed under

both
NTSCD−−−−→ and

DOD−−−→ then V ′ is strongly commitment–closed in G.

Lemma 88 Let G = (V,E) be {start}–graph and start ∈ V ′ ⊆ V . If V ′ is

strongly commitment–closed in G then V ′ is closed under both
NTSCD−−−−→ and

DOD−−−→.

Lemma 90 Let G = (V,E, β) be a complete {end}–cfg and V ′ ⊆ V . If V ′

is closed under
PC-weak−−−−−→ then V ′ is strongly commitment–closed in G.

Lemma 91 Let G == (V,E) be a {start, end}–graph with start ∈ V ′ ⊆ V .

If V ′ is strongly commitment–closed in G then V ′ is closed under
PC-weak−−−−−→.

From these, we can prove our main result which shows that, indeed, both
strong forms of control dependence in the literature induce strong projections.
These forms of control dependence have thus been semantically characterised
for the first time. The characterisation is as follows:

Theorem 80 (Main theorem for strong control dependence)

(1) If G is a complete {start}–cfg with start ∈ V ′ then V ′ is closed under
DOD−−−→ and

NTSCD−−−−→ if and only if the induced graph induced by V ′ from G
is a strong projection of G.

(2) If G is a complete {start, end}–cfg with start ∈ V ′ then V ′ is closed under
PC-weak−−−−−→ if and only if the induced graph induced by V ′ from G is a strong
projection of G.

PROOF. (1) follows from Lemmas 87, 88 and Theorem 45 and

(2) follows from Lemmas 90, 91 and Theorem 45.

It can be seen from Theorem 80, that each form of strong control dependence
requires a restriction to the cfg for it to be characterised by a strong pro-
jection. As Theorem 45 showed, strong commitment–closedness, on the other
hand, requires no such restriction and can thus be more generally applied.
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8.2 Ranganath’s non–termination–sensitive control dependence
NTSCD−−−−→

Ranganath et al. [30] observe that, despite being widely used, existing defini-
tions and approaches to calculating control dependence are difficult to apply
directly to modern program structures which make substantial use of exception
processing and which may deliberately run indefinitely. A major motivation
of Ranganath’s work is that traditional forms of control require the end to
be reachable from every vertex. They rightly claim that this is not a suitable
restriction for such programs which are designed to non–terminate. So they,
like us, allow cfgs where end is not necessarily reachable from every vertex.

For these sort of programs, they argue that the slice should non–terminate in
all initial states when the original does. In order to compute this strong form
of slice, Ranganath et al. define two new control dependence relations:

• Non–termination–sensitive control dependence,
NTSCD−−−−→.

• Decisive order dependence (sometimes referred to as direct order depen-

dence),
DOD−−−→.

In the definitions below, reproduced from their work [30], the term maximal
path refers to a path that either is infinite or ends at end. The definitions still
make sense for the more general class of graphs under investigation in this
paper where a maximal path is taken as the path ω̄ of a maximal walk ω (see
Definitions 13 and 19). By Proposition 21 both of these notions of maximal
path coincide in cfgs where all predicates are complete.

Definition 81 (
DOD−−−→) Let G = (V,E) be a finite directed graph, then v

DOD−−−→
b, c if and only if:

(1) All maximal paths from v contain both b and c.
(2) v has an immediate successor from which all maximal paths contain b

before any occurrence of c.
(3) v has an immediate successor from which all maximal paths contain c

before any occurrence of b.

Definition 82 (
NTSCD−−−−−→) Let G = (V,E) be a finite directed graph, then

v
NTSCD−−−−→ w if and only if:

(1) v has at least two immediate successors.
(2) w occurs on all maximal paths from one of these immediate successors.
(3) there is a maximal path from another immediate successor which does not

contain w.
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u endwv

Fig. 22. Vertex w forward dominates v but does not strongly forward dominate v.

8.3 Podgurski–Clarke weak control dependence

Definition 83 (Strong forward domination) Let G be an {end}–graph.
A vertex w strongly forward dominates a vertex v if and only if w forward
dominates v and there exists an n ∈ N such that every path of length n from
v contains w.

Strong forward domination is a properly stronger condition than forward dom-
ination as can be seen by the diagram in Figure 22.

Definition 84 (
PC-weak−−−−−→) Let G = (V,E) be an {end}–graph, then v

PC-weak−−−−−→
u if and only if:

(1) v has at least two immediate successors w1 and w2.
(2) u strongly forward dominates w1 but does not strongly forward dominate

w2.

In {end}–graphs
PC-weak−−−−−→ and

NTSCD−−−−→ are equivalent. Ranganath et al. [30]
prove a similar result (Theorem 3 (Coincidence Properties, II)). We shall show

in Lemma 85 that
NTSCD−−−−→ (by itself) is equivalent to Podgurski–Clarke weak

control dependence in {end}–graphs.

Lemma 85 Let G = (V,E) be an {end}–graph. Then for all u, v ∈ V ,

v
PC-weak−−−−−→ u if and only if v

NTSCD−−−−→ u.

PROOF. Observe that since end is reachable from every vertex in V , a path
in G is maximal if and only if it is either infinite or reaches end.

We prove that for u,w ∈ V , u strongly forward dominates w if and only if
every maximal path from w passes through u.

With this equivalence part 2 of Definition 82 becomes equivalent to the condi-
tion of w1 in Definition 84. The contra–positive form of this equivalence makes
part 3 of Definition 82 equivalent to the condition on w2 in Definition 84.

Suppose that u strongly forward dominates v. Then by Definition 83, u strongly
forward dominates an immediate successor w of v. Then from Definition 84,
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every maximal path from w passes through u.

Conversely, assume that every maximal path from w passes through u. Clearly
u forward dominates w, but in addition every path wρ of length |V |+ 1 must
pass through u, since wρ must pass more than once through at least one
vertex, and so if wρ does not pass through u, then an infinite path from w
exists which also does not pass through u, giving a contradiction, hence u
strongly forward dominates w.

Lemma 86 Let G = (V,E) be a finite directed graph and let v ∈ V . Let
d1, . . . , dn ∈ V be all the immediate successors of v, and assume that n > 2.
Let e1, . . . , en ∈ V and assume that for each i 6 n, all maximal paths from di
pass through ei, and do so before passing through any ej for j 6= i. Then either

there exist ek, el such that v
DOD−−−→ ek, el or there exists el such that v

NTSCD−−−−→ el.

PROOF. If every vertex ei occurs on every maximal path starting at any of

the vertices dj, then v
DOD−−−→ ei, ej for every i 6= j follows. Otherwise, there

exist i, j such that ei does not occur on every maximal path starting at dj,
whereas necessarily ei occurs on every maximal path starting at di. Hence

v
NTSCD−−−−→ ei follows.

8.4 The relationship between strongly commitment–closed sets and sets closed

under both
NTSCD−−−−→ and

DOD−−−→

Lemma 87 Let G = (V,E, β) be a complete cfg. V ′ is closed under both
NTSCD−−−−→ and

DOD−−−→ then V ′ is strongly commitment–closed in G.

PROOF. For any x ∈ V \V ′, we first define Sx to be the set of all vertices
in V \V ′ which are reachable from x via a path which only contains vertices
in V \V ′. Observe that if (x, y) is an edge with x, y ∈ V \V ′, then Sx ⊇ Sy,
with strict inclusion if there is no maximal path starting at x and not passing
through V ′, since in that case x ∈ Sx\Sy.

Suppose that V ′ is not strongly commitment–closed in G. Then there is a
vertex v ∈ V \V ′ which is not V ′–avoiding and is not strongly committing.
Choose v satisfying this condition such that |Sv| is minimal and among such
vertices having the minimal value for |Sv|, the distance in G from v to the set
V ′ (which is defined, since v is not V ′–avoiding) is minimal. Let d1, . . . , dn ∈ V
be all the immediate successors of v, where we assume that d1 is closer to V ′

than v is.
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{T}
start endp0

(a) G23(a)

start end

(b) G23(b)

Fig. 23. The smallest set closed under
NTSCD−−−−−→ and

DOD−−−→ in G23(a) containing
{start, end} is {start, end} but the induced graph, G23(b), is not a strong projection
of G23(a) because the maximal walk, start, (p0,F), of G23(a) restricts to the walk start
of G23(b) which is not maximal in G23(b). Alternatively, we can see that {start, end}
is not strongly commitment closed in G23(a) since p0 is reachable from {start, end} in
G23(a) but p0 is neither {start, end}–strongly committing nor {start, end}–avoiding
in G23(a).

Since v is not V ′–avoiding, there is a V ′–path (v, d1, . . .) in G with endpoint
w ∈ V ′, and since all predicate vertices in V are complete and v is not strongly
committing, there is a complete and hence maximal path ρ starting at v which
does not pass through a vertex in V ′. Clearly d1 is not V ′–avoiding, and so
by the minimality assumption on v, the condition on d1 and the fact that
d1 /∈ V ′ ⇒ Sd1 ⊆ Sv holds, d1 is strongly committing and hence all maximal

paths starting at d1 pass through w, whereas ρ does not. Thus v
NTSCD−−−−→ w

holds, hence V ′ is not closed under
NTSCD−−−−→.

Thus we may assume that every maximal path starting at v (or hence at any
vertex di) passes through a vertex in V ′. Thus di /∈ V ′ ⇒ Sdi ⊆ Sv\{v} holds
for each i, and so each di is strongly committing and thus there are vertices
ei ∈ V ′ such that for all i 6 n, either di = ei or every V ′–path starting at
di ends at ei, and at least one such V ′–path exists. Since v is not strongly
committing, it is not weakly–committing, and so n > 2. Thus by Lemma 86,

V ′ is not closed under both
NTSCD−−−−→ and

DOD−−−→.

Figure 23 gives an example where the graph has incomplete predicates. V ′ is

closed under both
NTSCD−−−−→ and

DOD−−−→ but V ′ is not strongly commitment–closed
in G and hence the induced graph is not a strong projection. This shows that
we cannot drop the ‘complete predicates’ condition of Theorem 87.

Lemma 88 Let G = (V,E) be start–graph and start ∈ V ′. If V ′ is strongly

commitment–closed in G then V ′ is closed under both
NTSCD−−−−→ and

DOD−−−→.

PROOF. We consider two cases.

• First assume that V ′ is not closed under
DOD−−−→. Then v

DOD−−−→ b1, b2 for some
b1, b2 ∈ V ′ and v ∈ V \V ′. Thus v has immediate successors x1, x2 such that
for each i, all maximal paths from xi contain bi before b3−i. By definition

of
DOD−−−→, there are paths xiνi on which b3−i does not occur, and on which
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bi occurs at the end, but not before; and by conditions (2) and (3) of the
DOD−−−→ definition, no vertex occurs on both paths. Hence each path xiνi has
a prefix τiai which is a V ′–path for distinct ai ∈ V ′, and so v ∈ WDG(V ′).
Now, v is reachable from start ∈ V ′, so by Lemma 47 V ′ is not weakly
commitment–closed, and hence not strongly commitment–closed.

• Suppose instead that V ′ is not closed under
NTSCD−−−−→. Thus v

NTSCD−−−−→ w holds
for some w ∈ V ′ and v ∈ V \V ′. Hence v has immediate successors x1, x2
such that all maximal paths from x1 contain w, but there is a maximal and
hence complete path x2µ not passing through w. Thus v is not strongly
committing. Since v is clearly not V ′–avoiding, and is reachable from start,
V ′ is not strongly commitment–closed.

8.5 The relationship between strongly commitment–closed sets and sets closed
under Podgurski–Clarke weak control dependence

Let G = (V,E, β) be a {start, end}–cfg and V ′ ⊆ V . In this section we prove
that V ′ is strongly commitment–closed in G if and only if V ′ is closed under
Podgurski–Clarke weak control dependence.

Theorems 91 and 90 show that closure under
PC-weak−−−−−→ is equivalent to strong

commitment–closedness for vertex sets containing start, provided that end is
reachable from all vertices.

Lemma 89 Let G = (V,E) be an {end}–cfg, then for all v, b, c ∈ V , v
DOD−−−→

b, c never holds.

PROOF. Suppose that v
DOD−−−→ b, c holds. After interchanging b and c if

necessary, there is a path bρend which does not pass through c. From condition
(2) of Definition 81 there is a path vσb which also does not pass through c.
However this contradicts condition (1) of Definition 81.

Lemma 90 Let G = (V,E) be a complete {end}–cfg and V ′ ⊆ V . If V ′ is

closed under
PC-weak−−−−−→ then V ′ is strongly commitment–closed in G.

PROOF. This follows immediately from Lemma 89 and Theorems 85 and
87.

Lemma 91 Let G = (V,E) be a {start, end}–graph and let start ∈ V ′ ⊆ V . If

V ′ is strongly commitment–closed in G then V ′ is closed under
PC-weak−−−−−→.
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PROOF. Suppose V ′ is not closed under
PC-weak−−−−−→. Thus for some u ∈ V ′

and v ∈ V \V ′, v PC-weak−−−−−→ u holds. Thus by Theorem 85 and the fact that
end is reachable from u, for vertices wi there is a path vw1ρ1u and a maximal
and hence complete path vw2ρ2 which does not pass through u, and every
maximal path starting at a vertex on w1ρ1u passes through u. Clearly v is not
V ′–avoiding. Let x1 be first element of V ′ to occur on vw1ρ1. If vw2ρ2 does not
pass through V ′, then v is not V ′–strongly committing. On the other hand,
suppose that x2 is the first element of V ′ to occur on vw2ρ2, then x1 6= x2,
since otherwise there would be a maximal path from x1 not passing through
u. Again, we have shown that v is not V ′–strongly committing. Thus, since
start ∈ V ′, V ′ is not strongly commitment–closed, proving the theorem.

We have shown that both strong forms of control dependence in the literature
are essentially the same: vertex sets closed under them all induce strong pro-
jections. We may call any relation on vertex sets that has the property strong

control dependence. So
PC-weak−−−−−→ and the combination of

NTSCD−−−−→ and
DOD−−−→ are

both examples of strong control dependence.

9 Conclusions and Future Work

Authors have previously expressed control dependence as a relation between
the vertices of a cfg. In an attempt to capture the intention of control de-
pendence, we, on the other hand, define relations between cfgs and show
that all previous forms of control dependence induce graphs which, indeed,
satisfy these relations. Weak and strong projection can, thus, be thought of as
a specification or a semantics of control dependence rather than an implemen-
tation. Furthermore, by introducing weak and strong commitment-closedness,
we have generalised control dependence and algorithms which compute sets
closed under it.

We believe these very natural relations can be considered as correctness criteria
for future definitions of control dependence on more general structures and
that authors of such new definitions will have a proof obligation based on them.
The work we present here also has practical implications: we have defined
reasonably efficient algorithms which can be used for slicing more general
structures than those considered previously. Weak and strong commitment-
closedness also generalises further. Future research will include the following
work:

(1) We will investigate the applicability of the theory to more general struc-
tures. Clearly, since the concept of a walk generalises to arbitrary finite
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labelled graphs, so do weak and strong projections. This may be use-
ful, for example, in defining control dependence in graphs representing
non–deterministic programs where non-predicate vertices may have out–
degree greater than one and predicates may have non-disjoint edge labels.

(2) We will investigate the theoretical validity and practicability of combining
the algorithms for the minimal weakly and strongly commitment–closed
supersets of V ′ in G and described in this paper with data dependence
to form weak and strong semantic slices of arbitrarily unstructured pro-
grams.

(3) Improvements to the algorithms for computing the minimal weakly and
strongly commitment–closed supersets of V ′ in G will be investigated.
It is believed that an O(V 3) worst–case time complexity algorithm may
exist.

(4) We will investigate the application our generalised notions of control
dependence to other structures for example extended finite state ma-
chines [4].
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